
The openair manual
open-source tools for analysing air

pollution data

University of York and Ricardo Energy & Environment

OPEN so
u
rc

e

David Carslaw

version: 12th November 2019

The openair package and the documentation are provided in the hope that it is
useful to you. While these tools are free, if you use them, we ask that acknowledge-
ment be given to their source. Please cite:

Carslaw, D.C. and K. Ropkins, (2012). openair — an R package for air qual-
itydataanalysis. EnvironmentalModelling&Software. Volume27-28,pp.
52–61.

Carslaw, D.C. (2019). The openair manual — open-source tools for
analysing air pollution data. Manual for version 2.6-6, University of York.

Every effort has been made to ensure the proper functioning of these tools and
their effective and accurate documentation. We would like to be informed of any
problems or queries related you have relating to their use. All correspondence
should be sent to mailto:david.carslaw@york.ac.uk.

The development website is https://github.com/davidcarslaw/openair.
Please use the Github website ‘Issues’ tracker to report any bugs, make
suggestions or ask questions.

This document was produced using R version 3.6.1 and openair version 2.6-6.

Copyright © 2019 David C. Carslaw.

mailto:david.carslaw@york.ac.uk
https://github.com/davidcarslaw/openair

Contents

Contents

1 Introduction 6

1.1 Access to source code . 6
1.2 Brief introduction to openair functions 6
1.3 Input data requirements . 11

1.3.1 Dealing with more than one site 12
1.4 Using colours . 12
1.5 Automatic text formatting . 12
1.6 Multiple plots on a page . 13
1.7 Annotating openair plots . 14
1.8 Getting help . 21

2 Getting data into openair 21

2.1 Issues related to time zones . 21
2.2 The import function . 23
2.3 Importing UK Air Quality Data . 25
2.4 Site Meta Data . 27
2.5 Importing data from the CERC ADMS modelling systems 28

2.5.1 An example considering atmospheric stability 29

3 The summaryPlot function 32

4 The cutData function 36

5 The windRose and pollutionRose functions 37

5.1 Purpose . 37
5.2 Options available . 38
5.3 Example of use . 40

6 The percentileRose function 49

6.1 Purpose . 49
6.2 Options available . 49
6.3 Example of use . 51

7 The polarFreq function 54

7.1 Purpose . 54
7.2 Options available . 54
7.3 Example of use . 56

8 The polarPlot and polarCluster functions 60

8.1 Purpose . 60
8.2 Options available . 62
8.3 Example of use . 66

8.3.1 Nonparametric Wind Regression, NWR 71
8.3.2 Conditional Probability Function (CPF) plot 71
8.3.3 Pairwise statistics . 74
8.3.4 The polarCluster function for feature identification and ex-

traction . 75

9 The polarAnnulus function 80

9.1 Purpose . 80
9.2 Options available . 81

3

Contents

9.3 Example of use . 83

10 The timePlot function 85

10.1 Purpose . 85
10.2 Options available . 86
10.3 Example of use . 89

11 The timeProp function 92

12 The calendarPlot function 95

12.1 Purpose . 95
12.2 Options available . 95
12.3 Example of use . 97

13 The TheilSen function 103

13.1 Purpose . 103
13.2 Options available . 105
13.3 Example of use . 107
13.4 Output . 110

14 The smoothTrend function 111

14.1 Purpose . 111
14.2 Options available . 112
14.3 Example of use . 114

15 The timeVariation function 118

15.1 Purpose . 118
15.2 Options available . 119
15.3 Example of use . 121
15.4 Output . 127

16 The scatterPlot function 128

16.1 Purpose . 128
16.2 Options available . 128
16.3 Example of use . 132

17 The linearRelation function 138

17.1 Options available . 139
17.2 Example of use . 140

18 The trendLevel function 141

18.1 Purpose . 141
18.2 Options available . 141
18.3 Example of use . 143

19 openair back trajectory functions 149

19.1 Trajectory gridded frequencies . 156
19.2 Trajectory source contribution functions 158

19.2.1 Identifying the contribution of high concentration back trajec-
tories . 158

19.2.2 Allocating trajectories to different wind sectors 160
19.2.3 Potential Source Contribution Function (PSCF) 162
19.2.4 Concentration Weighted Trajectory (CWT) 163

4

Contents

19.3 Back trajectory cluster analysis with the trajCluster function 165

20 Model evaluation — the modStats function 170

20.1 Purpose . 170
20.2 Options available . 172
20.3 Example of use . 173

21 Model evaluation — the TaylorDiagram function 175

21.1 Purpose . 175
21.2 Options available . 178
21.3 Example of use . 179

22 Model evaluation— theconditionalQuantile andconditionalEval func-

tions 181

22.1 Purpose . 181
22.2 Options available . 182
22.3 Example of use . 183

23 The calcFno2 function—estimating primary NO2 fractions 190

23.1 Purpose . 190
23.2 Options available . 191
23.3 Example of use . 191

24 Utility functions 195

24.1 Selecting data by date . 195
24.2 Selecting run lengths of values above a threshold — pollution episodes 196
24.3 Calculating rolling means . 198
24.4 Aggregating data by different time intervals 199
24.5 Calculating percentiles . 204
24.6 The corPlot function — correlation matrices 205
24.7 Preparing data to compare sites, for model evaluation and intervention

analysis . 207
24.7.1 Intervention analysis . 207
24.7.2 Combining lots of sites . 208

Acknowledgements 210

Further information and bug reporting 210

A Bootstrap estimates of uncertainty 214

A.1 The bootstrap . 214
A.2 The block bootstrap . 214

B A closer look at trends 216

C Production of HYSPLIT trajectory files 222

5

1 Introduction

1 Introduction

This document provides information on the use of computer software called ‘R’ to
analyse air pollution data. The document supports an initiative to develop and make
available a consistent set of tools for analysing and understanding air pollution data in
a free, open-source environment.

The amount of monitoring data available is substantial and increasing. In the UK
alone there are thought to be over 1000 continuous monitoring sites. Much of the data
available is only briefly analysed; perhaps with the aim of comparing pollutant concen-
trations with national and international air quality limits. However, as it will hopefully
be seen, the critical analysis of air pollution data can be highly rewarding, perhaps
yielding important information on pollutant sources that was previously unknown or
unquantified.

This document focuses on the development and use of dedicated functions written
to process air pollution data. These functions greatly extend the capabilities outlined
in Part I, where the focus was on developing an understanding of R.

While many of the options in these functions allow quite a sophisticated analysis to be
undertaken, the defaults generally use the simplest (and fastest) assumptions. A more
detailed analysis can refine these assumptions e.g. by accounting for autocorrelation,
or fine-control over the appearance of a plot.

It should be noted that while the aim is to keep this documentation up to date, the
primary source of information related to the different functions is contained within
the package itself. Once loaded, type ?openair to see all the help pages associated
with the package. The website for openair is http://www.openair-project.org.

Thissectioncontainsimportantinformationonloadingtheopenairpackage
for thefirst timeandthe inputdatarequirements. Userswillneedtoconsider
the advice in this section to ensure that openair can be used without problems.

In this manual two packages are frequently used and it is a good idea to load both.

library(openair)

library(tidyverse)

Note that it is only necessary to install packages once — unless a package has been
updated or a new version of R is installed. Occasionally it is useful to update the
packages that have been installed through the ‘Update packages’ option under the
Packages menu. Because the openair package (and R itself) are continually updated, it
will be useful to know this document was produced using R version 3.6.1 and openair

version 2.6-6.

1.1 Access to source code

All R code is accessible. On CRAN, you will see there are various versions of packages:
Package source, MacOS X binary and Windows binary. The source code is contained
in the Package source, which is a tar.gz (compressed file).

For openair all development is carried out using Github for version control. Users can
access all code used in openair at https://github.com/davidcarslaw/openair.

1.2 Brief introduction to openair functions

This section gives a brief overview of the functions in openair. The core functions are
summarised in Table 1.3, which shows the input variables required, the main purpose
of the function, whether multiple pollutants can be considered and a summary of

6

http://www.openair-project.org
https://github.com/davidcarslaw/openair

1 Introduction

the type option. The type option given in Table 1.3 gives the maximum number of
conditioning variables allowed in each function — more on this later.

Having read some data into a data frame it is then straightforward to run any function.
Almost all functions are run as:

functionName(thedata, options, ...)

The usage is best illustrated through a specific example, in this case the polarPlot
function. The details of the function are shown in Section 8 and through the help pages
(type ?polarPlot). As it can be seen there are a large number of options associated with
polarPlot— and most other functions and each of these has a default. For example,
the default pollutant considered in polarPlot is ‘nox’. If the user has a data frame
called theData then polarPlot could minimally be called by:

polarPlot(theData)

which would plot a ‘nox’ polar plot if ‘nox’ was available in the data frame theData.
Note that the options do not need to be specified in order nor is it always necessary

to write the whole word. For example, it is possible to write:

polarPlot(theData, type = "year", poll = "so2")

In this case writing poll is sufficient enough to uniquely identify that the option is
pollutant.

Also there are many common options available in functions that are not explicitly doc-
umented, but are part of lattice graphics. Some of the common ones are summarised
in Table 1.1. The layout option allows the user to control the layout of multi-panel
plots e.g. layout = c(4, 1)would ensure a four-panel plot is 4 columns by 1 row.

TABLE 1.1 Common options used in openair plots that can be set by the user but are generally
not explicitly documented.

option description

xlab x-axis label
ylab y-axis label
main title of the plot
pch plotting symbol used for points
cex size of symbol plotted
lty line type used
lwd line width used
layout the plot layout e.g. c(2, 2)

Controlling font size

All openair plot functions have an option fontsize. Users can easily vary the size of
the font for each plot e.g.

polarPlot(mydata, fontsize = 20)

The font size will be reset to the default sizes once the plot is complete. Finer control
of individual font sizes is currently not easily possible.

7

1 Introduction

The openair ‘type’ option

One of the central themes in openair is the idea of conditioning plots. Rather than plot
x against y, considerably more information can usually be gained by considering a
third variable, z. In this case, x is plotted against y for many different intervals of z.
This idea can be further extended. For example, a trend of NOx against time can be
conditioned in many ways: NOx vs. time split by wind sector, day of the week, wind
speed, temperature, hour of the day…and so on. This type of analysis is rarely carried
out when analysing air pollution data, in part because it is time consuming to do.
However, thanks to the capabilities of R and packages such as lattice and ggplot2,
it becomes easier to work in this way.

In most openair functions conditioning is controlled using the type option. type can
be any other variable available in a data frame (numeric, character or factor). A simple
example of typewould be a variable representing a ‘before’ and ‘after’ situation, say
a variable called period i.e. the option type = "period" is supplied. In this case a
plot or analysis would be separately shown for ‘before’ and ‘after’. When type is a
numeric variable then the data will be split into four quantiles and labelled accordingly.
Note however the user can set the quantile intervals to other values using the option
n.levels. For example, the user could choose to plot a variable by different levels
of temperature. If n.levels = 3 then the data could be split by ‘low’, ‘medium’ and
‘high’ temperatures, and so on. Some variables are treated in a special way. For example
if type = "wd" then the data are split into 8 wind sectors (N, NE, E, …) and plots are
organised by points of the compass.

There are a series of pre-defined values that type can take related to the temporal
components of the data. To use these there must be a date field so that the can be
calculated. These pre-defined values oftype are shown in Table 1.2 are both useful and
convenient. Given a data frame containing several years of data it is easy to analyse
the data e.g. plot it, by year by supplying the option type = "year". Other useful and
straightforward values are ”hour” and ”month”. When type = "season" openair

will split the data by the four seasons (winter = Dec/Jan/Feb etc.). Note for southern
hemisphere users that the option hemisphere = "southern" can be given. When
type = "daylight" is used the data are split between nighttime and daylight hours.
In this case the user can also supply the options latitude and longitude for their
location (the default is London).

TABLE 1.2 Pre-defined time-based values for the openair type option.

option splits data by …

”year” year
”hour” hour of the day (0 to 23)
”month” Month of the year
”season” spring, summer, autumn, winter
”weekday” Monday, Tuesday, …
”weekend” Saturday, Sunday, weekday
”monthyear” every month-year combination
”gmtbst” separately considers daylight saving time periods
”daylight” nighttime and daylight

Table 1.3 summarises the functions that accept the option ‘type’ and the number of
types that can be set. Numerous examples of conditioning are given throughout this
document.

8

1 Introduction

TABLE 1.3 Summary of main openair analysis functions. Click on function name to be taken to
the section on that function.

Function Mandatory variables Purpose Multiple type
pollutants option

calcFno2 see §(23) for details estimate primary NO2 emis-
sions ratio from monitoring
data

no no

calendarPlot date, one numeric field Calendar-type view of mean
values

no no

conditionalEval observed and modelled val-
ues and other variables(s)

extensions to
conditionalQuantile

no yes [1]

conditionalQuantile observed and modelled val-
ues

quantile comparisons for
model evaluation

no yes [2]

kernelExceed date, ws, wd, one other nu-
meric field

bivariate kernel density esti-
mates for exeedance statistics

no Yes [1]

linearRelation date, two numeric fields explore linear relationships
between variables in time

no limited

TheilSen date, one numeric field Calculate Theil-Sen slope esti-
mates and uncertainties

no Yes [2]

modStats observed and modelled val-
ues

calculate a range of model
evaluation statistics

no yes [≥1]

percentileRose wd, one other numeric field percentiles by wind direction no Yes [2]
polarAnnulus date, ws, wd, one other nu-

meric field
polar annulus plot for tempo-
ral variations by wind direc-
tion

yes Yes [2]

polarCluster ws, wd, one other numeric
field

cluster analysis of bi-variate
polar plots for feature extrac-
tion

No No

polarFreq ws, wd alternative to wind rose/pollu-
tion rose

no Yes [2]

polarPlot ws, wd, one other numeric
field

bi-variate polar plot yes Yes [2]

pollutionRose ws, wd, one other numeric
field

pollution rose no Yes [2]

scatterPlot x and y values to plot traditional scatter plots with
enhanced options

no Yes [2]

smoothTrend date, one numeric field smooth trend estimates yes Yes [2]
summaryPlot date, one numeric field summary view of a data frame yes no
TaylorDiagram two numeric fields model evaluation plot no Yes [2]
timePlot date, one numeric field Time-series plotting yes Yes [1]
timeProp date, one numeric, one cate-

gory field
Time-series plotting with cat-
egories as stacked bar chart

yes Yes [1]

timeVariation date, one numeric field diurnal, day of week and
monthly variations

yes Yes [1]

trajCluster data from importTraj HYSPLIT back trajectory clus-
ter analysis

no Yes [2]

trajPlot data from importTraj HYSPLIT back trajectory plots
— points of lines

no Yes [2]

trajLevel data from importTraj HYSPLIT back trajectory plots
— binned or smoothed

no Yes [2]

trendLevel date, one other numeric field flexible level plots or ‘heat
maps’

no Yes [2]

windRose date, ws, wd traditional wind rose no Yes [2]

9

1 Introduction

TABLE 1.4 Summary of openair utility functions. Click on function name to be taken to the
section on that function.

Function Mandatory variables Purpose Multiple type
pollutants option

calcPercentile date, one numeric variable calculate percentiles for nu-
meric variables in a data
frame

NA NA

corPlot a data frame correlation matrix with con-
ditioning

yes yes [1]

cutData a data frame partition data into groups
for conditioning plots and
analysis

yes yes [≥1]

importADMS an ADMS output file e.g.
.pst, .met, .mop, .bgd

import outputs from the
ADMS suite of dispersion
models (McHugh et al.
1997)

NA NA

importAURN site code and year import hourly data
from the UK air qual-
ity data archive (http:
//www.airquality.

co.uk/data_and_

statistics.php)

NA NA

importKCL site code and year import hourly data from the
London Air data archive
(http://www.londonair.
org.uk/LondonAir/

Default.aspx)

NA NA

importTraj site code and year import HYSPLIT back trajec-
tory data from KCL servers

NA NA

quickText a string properly format common
pollutant names and units

NA NA

selectByDate date and one other variable flexibly select date periods
by year, day of week etc.

NA NA

selectRunning date and one other variable select contiguous periods of
a certain run-length above
a specified threshold

NA NA

splitByDate date and one other variable partition and label a data
frame by time periods

NA NA

timeAverage date, one numeric variable calculate statistics over flex-
ible time periods account
for data capture rates etc.

NA NA

10

http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.londonair.org.uk/LondonAir/Default.aspx

1 Introduction

1.3 Input data requirements

The openair package applies certain constraints on input data requirements. It is im-
portant to adhere to these requirements to ensure that data are correctly for-
matted for use in openair. The principal reason for insisting on specific input data
format is that there will be less that can go wrong and it is easier to write code for a
more limited set of conditions.

The openair package requires as an input a data frame, which generally consists
of hourly date/time, pollution and meteorological data. As shown elsewhere in this
document, the recommended way of inputting data into R is through reading a .csv
file. This in itself avoids potential issues with ‘awkward’ file formats e.g. with varying
header lines. Of course, anyone familiar with R will know how to do this and may
choose to import their data from a range of sources such as databases. A few important
requirements and advice are given below.

Use openair functions to help import data!

There are several functions in (§2) thatmake the process of importing data into openair

much simpler. Where possible, these functions should be used. (§2) also contains some

useful functions for manipulating data.

1. Data should be in a ‘rectangular’ format i.e. columns of data with a header on
the first line. The file ‘example data long.csv’ provides a template for the format
and users should refer to that file if in doubt. The best approach is to use the
import function that is part of openair, described in (§2).

2. Where fields should have numeric data e.g. concentrations of NOx, then the user
should ensure that no other characters are present in the column, accept maybe
something that represents missing data e.g. ‘no data’. Even here, it is essential
to tell the import function how missing data are represented; see (§2).

3. The date/time field should be given the heading date — note the lower case. No
other name is acceptable.

4. The wind speed and wind direction should be named ws and wd, respectively
(note again, lower case). Most functions have been written assuming reasonable
ranges in wind speed in m s−1. However, the functions will work if the units were
in knots, for example and several functions allow the user to annotate the plots
with the correct units. Wind directions follow the UK Met Office format and are
represented as degrees from north e.g. 90° is east. North is taken to be 360°.

5. Other variables names can be upper/lower case but should not start with a number.
If column names do have white spaces, R will automatically replace them with a
full-stop. While ‘PM2.5’ as a field name is perfectly acceptable, it is a pain to type
it in—better just to use ‘pm25’ (openair will recognise pollutant names like this
and automatically format them as PM2.5 in plots).

Note if users wish to assume non-zero wind speeds to be calm e.g. any wind speed
below 0.5 m s−1, then these can be set directly e.g.

mydata$ws[mydata$ws < 0.5] <- 0

It should be mentioned again that any reasonably large amount of data should be
kept in a database and not Excel sheets and the like.

11

1 Introduction

1.3.1 Dealing with more than one site

In many situations users will have more than one site available and most openair func-
tions can deal with this situation. However, it does require that the data are in a certain
format. If the data are available via the AURN archive or via the KCL LAQN then it
is possible to use the importAURN or importKCL functions to select multiple sites at
once and the data will be correctly formatted for use by the functions.

If it is not possible to import the data in this way, it is necessary to format the data
in such a way that can be used. The format is very similar to that described above
for several pollutants at a single site. With more than one site it is necessary to have
another column (with name site) with the site name in. Data are therefore ‘stacked’.

Sometimes data will not be in this format and site data will be in separate columns.
(§24.7.2) shows the approach that can be used to format such data.

1.4 Using colours

Type colors() or

colours() into R

to see full list of

named colours

Many of the functions described require that colour scales are used; particularly for
plots showing surfaces. It is only necessary to consider using other colours if the user
does not wish to use the default scheme, shown at the top of Figure 1.1. The choice of
colours does seem to be a vexing issue as well as something that depends on what one
is trying to show in the first place. For this reason, the colour schemes used in openair

are very flexible: if you don’t like them, you can change them easily. R itself can handle
colours in many sophisticated ways; see for example the RColorBrewer package.

Several pre-defined colour schemes are available to make it easy to plot data. In
fact, for most situations the default colour schemes should be adequate. The choice of
colours can easily be set; either by using one of the pre-defined schemes or through a
user-defined scheme. More details can be found in the openair openColours function.
Some of the defined colours are shown in Figure 1.1, together with an example of a
user defined scale that provides a smooth transition from yellow to blue. The code that
produced this plot is shown for Figure 1.1:1

The user-defined scheme is very flexible and the following provides examples of its
use. In the examples shown next, the polarPlot function is used as a demonstration
of their use.

use default colours - no need to specify

polarPlot(mydata)

use pre-defined "jet" colours

polarPlot(mydata, cols = "jet")

define own colours going from yellow to green

polarPlot(mydata, cols = c("yellow", "green"))

define own colours going from red to white to blue

polarPlot(mydata, cols = c("red", "white", "blue"))

1.5 Automatic text formatting

openair will increasingly try to automate the process of annotating plots. It can be time
consuming (and tricky) to repetitively type in text to representμgm−3 or PM10 (μgm−3)
etc. in R. For this reason, an attempt is made to automatically detect strings such as
‘nox’ or ‘NOx’ and format them correctly. Where a user needs a y-axis label such as

1This is given for interest, the user does not need to know this to use the colours.

12

1 Introduction

library(openair)

small function for plotting

printCols <- function(col, y) {

rect((0:200) / 200, y, (1:201) / 200, y + 0.1, col = openColours(col, n = 201),

border = NA)

text(0.5, y + 0.15, deparse(substitute(col)))

}

plot an empty plot

plot(1, xlim = c(0, 1), ylim = c(0, 1.6), type = "n", xlab = "", ylab = "",

axes = FALSE)

printCols("default", 0)

printCols("increment", 0.2)

printCols("heat", 0.4)

printCols("jet", 0.6)

printCols("hue", 0.8)

printCols("brewer1", 1.0)

printCols("greyscale", 1.2)

printCols(c("tomato", "white", "forestgreen"), 1.4)

"default"

"increment"

"heat"

"jet"

"hue"

"brewer1"

"greyscale"

c("tomato", "white", "forestgreen")

FIGURE 1.1 Pre-defined colour scales in openair. The top colour scheme is a user-defined one.

NOx (μgm−3) it will only be necessary to type ylab = "nox (ug/m3)". The same is
also true for plot titles.

Over time we will add to the number of text strings that could be automatically
formatted. It is suggested that users get in touch if they have a specific request that is
not yet covered. Most functions have an option called auto.text that is set to TRUE
by default. Users can override this option by setting it to FALSE.

1.6 Multiple plots on a page

We often get asked how to combine multiple plots on one page. Recent changes to
openair makes this a bit easier. Note that because openair uses lattice graphics the
base graphics par settings will not work.

It is possible to arrange plots based on a column × row layout. Let’s put two plots

13

1 Introduction

side by side (2 columns, 1 row). First it is necessary to assign the plots to a variable:

a <- windRose(mydata)

b <- polarPlot(mydata)

Now we can plot them using the split option:

print(a, split = c(1, 1, 2, 1))

print(b, split = c(2, 1, 2, 1), newpage = FALSE)

In the code above for the ‘split’ option, the last two numbers give the overall layout
(2, 1) — 2 columns, 1 row. The first two numbers give the column/row index for that
particular plot. The last two numbers remain constant across the series of plots being
plotted.

There is one difficulty with plots that already contain sub-plots such astimeVariation
where it is necessary to identify the particular plot of interest (see the timeVariation
help for details). However, say we want a polar plot (b above) and a diurnal plot:

c <- timeVariation(mydata)

print(b, split = c(1, 1, 2, 1))

print(c, split = c(2, 1, 2, 1), subset = "hour", newpage = FALSE)

For more control it is possible to use the position argument. position is a vector
of 4 numbers, c(xmin, ymin, xmax, ymax) that give the lower-left and upper-right
corners of a rectangle in which the plot is to be positioned. The coordinate system for
this rectangle is [0–1] in both the x and y directions.

As an example, consider plotting the first plot in the lower left quadrant and the
second plot in the upper right quadrant:

print(a, position = c(0, 0, 0.5, 0.5), more = TRUE)

print(b, position = c(0.5, 0.5, 1, 1))

The position argument gives more fine control over the plot location.

1.7 Annotating openair plots

A frequently asked question about openair and requested feature is how to annotate
plots. While all openair functions could have options to allow annotations to be made,
this would make the functions cumbersome and reduce flexibility. Nevertheless it
is useful to be able to annotate plots in lots of different ways. Fortunately there are
existing functions in packages such as lattice and latticeExtra that allow for plots
to be updated. An example of the sorts of annotation that are possible is shown in
Figure 1.2, which is an enhanced version of Figure 10.1. These annotations have been
subsequently added to Figure 10.1 and built up in layers. This section considers how to
annotate openair plots more generally and uses Figure 1.2 as an example of the types of
annotation possible. Also considered specifically is the annotation of plots that are in
polar coordinates, as these can sometimes benefit from different types of annotation.

There are several different types of objects that can be useful to add to plots including
text, shapes, lines and other shading. Given that many openair plots can consist of
multiple panels, it is also useful to think about how to annotate specific panels. The
examples given in this section will apply to all openair plot, the only difference being
the coordinate system used in each case.

The basis of openair annotations is through the use of the latticeExtra package,
which should already be installed as part of openair. In that package there is a function

14

1 Introduction

N
O

x,
 O

3,
 P

M
2.

5,
 P

M
10

, w
s

0

100

200

300

400

500

some missing dataN
O

x

0

20

40

60

!!episode!!
70 ppb●

O
3

0

20

40

60

80

P
M

2.
5

0
20
40
60
80

100
120

re
fe

re
nc

e
lin

e

●

P
M

10

2

4

6

8

Aug 04 Aug 11 Aug 18 Aug 25

w
in

d
sp

d.

NOx O3 PM2.5 PM10 wind spd.

FIGURE 1.2 Examples of different ways of annotating a plot in openair.

called layer that effectively allows annotations to be built up ‘layer by layer’.

Adding text

To add text (or other annotations) it is necessary to know the coordinates on a plot for
where the text will go, which will depend on the data plotted. In this extended example
using the timePlot function, the y-axis will be in ordinary numerical units, whereas
the x-axis will be in a date-time format (POSIXct).

There are various ways that annotations can be added, but the method used here is
to add to the previous plot using a function called trellis.last.object() to which
we want to add a later. This may seem complicated, but once a few examples are
considered, the method becomes very powerful, flexible and straightforward. In a
multi-panel plot such as Figure 1.2 it is also useful to specify which rows/columns
should be added to. If they are not specified then the annotation will appear in all
panels.

First, a plot should be produced to which we wish to add some text.

make sure latticeExtra is loaded

library(latticeExtra)

timePlot(selectByDate(mydata, year = 2003, month = "aug"),

pollutant = c("nox", "o3", "pm25", "pm10", "ws"))

So, considering Figure 1.2, this is how the text ‘some missing data’ was added to the
top panel.

15

1 Introduction

trellis.last.object() +

layer(ltext(x = ymd("2003-08-04"), y = 200,

labels = "some missing data"), rows = 1)

So what does this do? First, the trellis.last.object() is simply the last plot that
was plotted. Next the layer function is used to add some text. The text itself is added
using the ltext (lattice) function. It is worth having a look at the help for ltext as that
gives an overview of all the common annotations and other options. We have chosen
to plot the text at position x = ‘2003-08-04’ and y = 200 and the label itself. A useful
option to ltext is pos. Values can be 1, 2, 3 and 4, and indicate positions below (the
default), to the left of, above and to the right of the specified coordinates

Adding text and a shaded area

This time we will highlight an interval in row 2 (O3) and write some text on top. Note
that this time we use the lpolygon function and choose to put it under everything else
on the plot. For the text, we have chosen a colour (yellow) font type 2 (bold) and made
it a bit bigger (cex = 1.5). Note also the ‘y’ values extend beyond the actual limits
shown on the plot — just to make sure they cover the whole region.

The polygon could of course be horizontal and more than one producing a series of
‘band’ e.g. air quality indexes. A more sophisticated approach is shown later for PM2.5.

add shaded polygon

trellis.last.object() +

layer(lpolygon(x = c(ymd("2003-08-07"),

ymd("2003-08-07"), ymd("2003-08-12"),

ymd("2003-08-12")), y = c(-20, 600, 600, -20),

col = "grey", border = NA), under = TRUE, rows = 2)

add text

trellis.last.object() +

layer(ltext(x = ymd_hm("2003-08-09 12:00"), y = 50,

labels = "!!episode!!", col = "yellow",

font = 2, cex = 1.5), rows = 2)

The small shaded, semi-transparent area shown in the bottom panel was added as
follows:

add shaded polygon

plt <- plt +

layer(lpolygon(x = c(ymd("2003-08-21"), ymd("2003-08-21"),

ymd("2003-08-23"), ymd("2003-08-23")),

y = c(4, 8, 8, 4), col = "blue", border = NA,

alpha = 0.2), rows = 5)

Adding an arrow

The arrow shown on the first panel of Figure 1.2 was added as follows. Note the code =

3 placed arrows at both ends. Note that angle is the angle from the shaft of the arrow
to the edge of the arrow head.

trellis.last.object() +

layer(larrows(ymd("2003-08-01"), 100,

ymd_hm("2003-08-08 14:00"),

100, code = 3, angle = 30), rows = 1)

16

1 Introduction

Adding a reference line and text

This code adds a vertical dashed reference line shown in the 4th panel (PM10) along
with some text aligned at 90 degrees using the srt option of ltext.

trellis.last.object() +

layer(panel.abline(v = ymd("2003-08-25"), lty = 5),

rows = 4)

trellis.last.object() +

layer(ltext(x = ymd_hm("2003-08-25 08:00"), y = 60,

labels = "reference line", srt = 90), rows = 4)

Highlight a specific point

Up until now annotations have been added using arbitrary coordinates in each panel.
What if we wanted to highlight a particular point, or more generally work with the
actual data that are plotted. Knowing how to refer to existing data greatly extends the
power of these functions.

It is possible to refer to a specific point in a panel simply by indexing the point of
interest i.e. x, y. For example, to mark the 200th PM10 concentration (without knowing
the actual date or value):

add a specfic point

trellis.last.object() +

layer(lpoints(x[200], y[200], pch = 16, cex = 1.5),

rows = 4)

What if we wanted to highlight the maximum O3 concentration? It is possible to
work out the index first and then use that to refer to that point. Note the ‘;’ to allow for
the code to span multiple commands.

add a point to the max O3 concentration

trellis.last.object() +

layer({maxy <- which.max(y);

lpoints(x[maxy], y[maxy], col = "black", pch = 16)},

rows = 2)

label max ozone

trellis.last.object() +

layer({maxy <- which.max(y);

ltext(x[maxy], y[maxy], paste(y[maxy], "ppb"),

pos = 4)}, rows = 2)

Add a filled polygon

It can be seen in the top panel of Figure 1.2 that some of the data are highlighted by
filling the area below the line. This approach can be useful more generally in plotting.
While it is possible to draw polygons easily and refer to the data itself, there needs to
be a way for dealing with gaps in data, otherwise these gaps could be filled in perhaps
unpredictable ways. A function has been written to draw a polygon taking into account
gaps (poly.na).

17

1 Introduction

poly.na <- function(x1, y1, x2, y2, col = "black", alpha = 0.2) {

for(i in seq(2, length(x1)))

if (!any(is.na(y2[c(i - 1, i)])))

lpolygon(c(x1[i - 1], x1[i], x2[i], x2[i - 1]),

c(y1[i - 1], y1[i], y2[i], y2[i - 1]),

col = col, border = NA, alpha = alpha)

}

This time we work out the ids of the data spanning an area of interest. Then the
poly.na function is used. Note that the alpha transparency is by default 0.2 but another
value can easily be supplied, as shown in the air quality ‘bands’ example.

trellis.last.object() +

layer({id <- which(x >= ymd("2003-08-11") &

x <= ymd("2003-08-25"));

poly.na(x[id], y[id], x[id], rep(0, length(id)),

col = "darkorange")}, rows = 1)

Add air quality bands as polygons

It is a simple extension to go from using a polygon below the data to polygons at certain
intervals e.g. air quality indexes. These are shown for PM2.5 and the bands considered
are 0–20, 20–30, 30–40 and>40.

trellis.last.object() +

layer(poly.na(x, y, x, rep(0, length(x)),

col = "green", alpha = 1), rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <20, NA, y), x,

rep(20, length(x)), col = "yellow", alpha = 1),

rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <30, NA, y),

x, rep(30, length(x)),

col = "orange", alpha = 1), rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <40, NA, y),

x, rep(40, length(x)),

col = "red", alpha = 1), rows = 3)

Polar plot examples

Many of the examples considered above are relevant to all other functions e.g. how to
add text, choosing rows and columns to plot in. Polar coordinate plots are different
because of the coordinate system used and this section considers a few examples.

One useful approach is to be able to draw an arc, perhaps highlighting an area of
interest. A simple, but flexible function has been written to do this. It takes arguments
theta1 and theta2 that define the angular area of interest and lower and upper to
set the lower and upper wind speed, respectively. It also has additional arguments
theta3 and theta4which optionally set the angles for the ‘upper’ wind speed.

18

1 Introduction

Error: Attempted to create layer with no stat.

Error: Attempted to create layer with no stat.

Error: Attempted to create layer with no stat.

Error: Attempted to create layer with no stat.

0

5

10 ws

15

20

25

W

S

N

E

mean

SO2

1

2

3

4

5

6

7

8

FIGURE 1.3 polarPlot for SO2 with annotations.

arc <- function(theta1 = 30, theta2 = 60, theta3 = theta1, theta4 = theta2,

lower = 1, upper = 10){

function to work out coordinates for an arc sector

if (theta2 < theta1) {

ang1 <- seq(theta1, 360, length = abs(theta2 - theta1))

ang2 <- seq(0, theta2, length = abs(theta2 - theta1))

angles.low <- c(ang1, ang2)

for upper angles

ang1 <- seq(theta1, 360, length = abs(theta4 - theta3))

ang2 <- seq(0, theta2, length = abs(theta4 - theta3))

angles.high <- c(ang1, ang2)

} else {

angles.low <- seq(theta1, theta2, length = abs(theta2 - theta1))

angles.high <- seq(theta3, theta4, length = abs(theta4 - theta3))

}

x1 <- lower * sin(pi * angles.low / 180)

y1 <- lower * cos(pi * angles.low / 180)

x2 <- rev(upper * sin(pi * angles.high / 180))

y2 <- rev(upper * cos(pi * angles.high / 180))

data.frame(x = c(x1, x2), y = c(y1, y2))

}

Following on from the previous examples, some annotations have been added to
the basic polar plor for SO2 as shown in Figure 1.3. Note that in these plots (0, 0) is the
middle of the plot and the radial distance will be determined by the wind speed — or
whatever the radial variable is. This way of plotting arcs can also be applied to other
functions that show directional data.

19

1 Introduction

polarPlot(mydata, pollutant = "so2", col = "jet")

trellis.last.object() + layer(ltext(-12, -12, "A", cex = 2))

trellis.last.object() + layer(ltext(10, 2, "B", cex = 2, col = "white"))

trellis.last.object() + layer(lsegments(0, 0, -11.5, -11.5, lty = 5))

add and arc to highlight area of interest

trellis.last.object() +

layer(lpolygon(x = arc(theta1 = 60, theta2 = 120, lower = 2,

upper = 15)$x, y = arc(theta1 = 60,

theta2 = 120, lower = 2,

upper = 15)$y, lty = 1, lwd = 2))

Using grid graphics — identify locations interactively

The examples above provide a precise way of annotating plots for single or multi-
panels openair displays. However, these methods won’t work for plots that consist of
completely separate plots such as the four plots in timeVariation. There are however
other methods that can be used to annotate such plots using the package grid, which
forms the basis of lattice graphics. There is enormous capability for annotating plots
using the grid package and only a few simple examples are given here.

Given a plot such as Figure 15.1, how could texts be added at any location — say in
the middle monthly plot? One very useful function for this type of annotation that
allows the user to interactively choose a location is the grid.locator() function in
the grid package. That function can be called with different coordinate systems — but
the one we want defines the bottom-left corner as (0, 0) and the top right as (1, 1).

First of all, make a timeVariation plot like Figure 15.1.

timeVariation(mydata)

Now let’s choose a location on the plot interactively using the mouse and selecting
somewhere in the middle of the monthly plot.

library(grid)

bring up the interactive location chooser

grid.locator(unit="npc")

What should happen is that in the R console the coordinates are given for that point.
In my case these were x = 0.503 and y = 0.338. These coordinates can now be used as the
basis of adding some text or other annotation. In the example below, the grid.text
function is used to add some text for these coordinates making the font bigger (cex =

2), bold (font = 2) and blue (col = "blue").

grid.text(x = 0.503, y = 0.338, label = "here!",

gp = gpar(cex = 2, font = 2, col = "blue"))

Even with this basic approach, some sophisticated annotation is possible with any
openair plot. There are many other functions that can be used from the grid package
that would allow for polygons, segments and other features to be drawn is a similar
way to the examples earlier in this section. Continuing with the same example, here is
how to add an arrow pointing to the maximum NOx concentration shown on the top
plot for Saturday (again using the grid.locator function).

grid.lines(x = c(0.736, 0.760), y = c(0.560, 0.778),

arrow = arrow())

grid.text(x = 0.736, y = 0.560, label = "maximum", just = "left")

20

2 Getting data into openair

1.8 Getting help

The principal place for seeking help with openair functions is through the software itself.
The document you are reading will increasingly give the background to the ideas and
wider information. Also, the package itself will always contain the most up to date help.
Furthermore, the process of building and checking packages is strict. For example, it
is checked to see if all the options in a function match with descriptions in the help
files, and all examples given in the help (and there are many) are run to ensure they all
work. Nevertheless, the options shown for each function in this document are parsed
directly from the openair package ensuring consistency between this document and the
package help. To bring up the general help page (assuming you have loaded openair),
type ?openair, which will bring up the main openair page, from which there are links
to all functions. Similarly, if you want help with a specific function more directly, type
something like ?polarPlot.

The help screen will provide the most up to date information on the function includ-
ing: a short description, a description of all the options, a more detailed description
and links to other similar functions. Importantly, each function help will have several
examples given of its use, which are easily reproducible; just copy them into R. These
examples use the data set ‘example data long.csv’ mentioned previously.

If you are typing directly into R you do not always need to type the whole word of
a function or option. Taking the calendarPlot function as an example, type ‘calen’
then press TAB and it will complete the whole string ‘calendarPlot’. Similarly, when
typing the function options such as ‘pollutant’, just type the first few lines ‘poll’, press
TAB and it will complete as ‘pollutant=’. This makes R much quicker to work with. It
takes a bit of experimentation to get a feel for how many letters are required before a
unique function name or option can be completed.

2 Getting data into openair

Importing data is usually the first step involved in data analysis using openair. As has
been stressed before, the key issue is ensuring the data are in a simple format avoiding
any unnecessary formatting. For this reason data are best stored either in a database
or a .csv file. R itself has lots of capabilities for importing data and these will be useful
in many situations e.g. read.table and read.csv. However, openair has several
dedicated functions to make data import easier for users, as well as some more specific
functions for particular data types. These are described below.

2.1 Issues related to time zones

Time zones can very difficult to work with in R and other software. Issues related to Day-
light Savings Time (DST) can be particularly challenging (see http://en.wikipedia.
org/wiki/List_of_zoneinfo_time_zones for information in World time zones).
In summary. openair assumes times that do not include DST. To do this assumptions
are made about times when data are imported to R using the openair import function
and users should take care if importing data in other ways.

Ensuring certainty in time zones used

It is recommended that when importing data into openair using either the import

function or by other means that the time zone of the original data are set to GMT or a

21

http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones
http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones

2 Getting data into openair

fixed offset from GMT as outlined in this section. This way of importing data and setting

the time zone should avoid any complexities related to Daylight Savings Time.

If the openair import function is used then the user can set the time zone for the
original data. By default ‘GMT/UTC’ is assumed. For non-GMT time zones a GMT
offset can be assumed. The option tzone (see below) can be used to control the time
zone. For example, to set the time zone of the data to the time zone in New York (EST,
5 hours behind GMT) set tzone = "Etc/GMT+5". To set the time zone of the data to
Central European Time (CET, 1 hour ahead of GMT) set tzone = "Etc/GMT-1". Note
that the positive and negative offsets are opposite to what most users expect.

When openair started the lubridate package did not exist. lubridatemakes for-
matting dates and times much easier and avoids much of the complexity that users
often face with these issues. While there are many useful functions in lubridate, the
convenience functions such as dmy, ymd, dmy_hm etc. are very useful and make it much
easier to format dates and times. Note that these functions will by default return data
in the UTC time zone in POSIXct format, which is required in openair and other R uses.
It is worth taking a look at the vignette for lubridate for an overview of capabilities.
However, a few examples of formatting dates are shown below:

library(lubridate)

dmy("1/5/2015")

[1] "2015-05-01"

dmy("1-5-2015")

[1] "2015-05-01"

dmy_hm("1/5/2015 12:00")

[1] "2015-05-01 12:00:00 UTC"

mdy_hms("1/5/2015 12:00:00")

[1] "2015-01-05 12:00:00 UTC"

Similarly the time zone should be set in the same way if the data are imported
manually. For example:

dat <- read.csv("~/My Drive/openair/Data/example data long.csv",

header = TRUE)

set time zone to equivalent of CET but with no DST:

dat$date <- dmy_hm(dat$date, tz = "Etc/GMT-1")

For most functions these issues will not matter. However, if users are including
data from other sources or are working with data that are GMT/UTC (Hysplit back
trajectories for example), then it will be important to understand how to deal with
these issues.

It may also be easier to set your R session to a non-DST time zone in a similar way to
make sure everything is displayed in a consistent format e.g.

Sys.setenv(TZ = "Etc/GMT-1")

22

2 Getting data into openair

2.2 The import function

A flexible function import has been written to import .csv or .txt file data and format
the date/time correctly. The main purpose of this function is to help format dates
etc. for use in openair and R. This is the principal means by which most users should
import data unless the data are from UK networks. It is simple to use with its default
assumptions e.g. header on the first line and a column ‘date’ in the format dd/mm/yyyy
HH:MM:

mydata <- import()

Typing this into R will bring up an ‘open file’ dialog box, from which you can choose
a .csv file. Try importing the ‘example data long.csv’ file in this was to see how it
works. Used without any options like this, it assumes that the date field is in the format
dd/mm/yyyy HH:MM and is called ‘date’. By default the time zone is set to be GMT.
However, users can apply a GMT offset as described in Section 2.1.

Often it is better to supply the file path because this makes the analysis more repro-
ducible e.g.

mydata <- import("d:/temp/my interesting data.csv")

The import function is actually very flexible and can take account of different date
formats, header lines etc. See the options below. For most users, few if any of these
options will need to be used, but for ‘difficult’ data, the flexibility should be helpful.
One option that is often useful is to tell R how missing data are represented. If the
fields are left blank, they will automatically be set to NA. However, it may be that the
file identifies missing data by ‘NoData’, or ‘-999’. In this case, import should be called
like:

mydata <- import(na.strings = "NoData")

or

mydata <- import(na.strings = "-999")

In the case of missing data being represented by several strings e.g. ‘-99.0’ and
‘-999’, it should be called like

mydata <- import(na.strings = c("-99.0", "-999"))

It isessential tosupplytheimport functionwithdetailsofhowmissingdata
are represented if they are not represented by either a blank cell or NA. This is
because if text is present in a column that should be numeric, then R will consider that
the column is a character and not numeric. When using the import function, details
of the format of each field are printed in R. The user can check that fields that should
be numeric appear as either ‘numeric’ or ‘integer’ and not ‘character’ or ‘factor’.

Another example is a file that has separate date and time fields e.g. a column called
‘mydate’ and a separate column called ‘mytime’. Further, assume that date is in the
format dd.mm.YYYY e.g. 25.12.2010, and time is in the format HH:MM. Then the file
could be imported as:

import("c:/temp/test.csv", date = "mydate", date.format = "%/d.%m.%Y",

time = "mytime", time.format = "%H:%M")

23

2 Getting data into openair

What if the date was in the format mm.dd.YYYY?:

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H:%M")

…and the time was just the hour as an integer (0–23):

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H")

Another common situation is that hour is represented as 1–24 in a date-time field.
In this case it is necessary to correct for this. R stores POSIXct format as seconds, so
3600 need to be subtracted to ensure the time is correct. Note that if there is a separate
column for hour then import will correct that automatically. So, for the date-time
situation:

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y %H",

correct.time = -3600)

Note if time was expressed as HH:MM:ss, then the optiontime.format = "%H:%M:%S"

should be used.
There are other options for ignoring the first n lines i.e. due to header information

and so on. The user can specify the header line row (header.at) and the row the data
starts at (data.at).

Note also that import assumes there are no daylight saving time (DST) issues in the
original data i.e. a missing hour in spring and a duplicate hour in autumn. Dealing
with these issues in R rapidly gets too complicated … users should therefore ensure the
original data do not consider DST.

The options for the import function are:

file The name of the file to be imported. Default, file = file.choose(),
opens browser. Alternatively, the use of read.table (in utils) also
allows this to be a character vector of a file path, connection or url.

file.type The file format, defaults to common ‘csv’ (comma delimited) format, but
also allows ‘txt’ (tab delimited).

sep Allows user to specify a delimiter if not ‘,’ (csv) or TAB (txt). For example
‘;’ is sometimes used to delineate separate columns.

header.at The file row holding header information or NULL if no header to be used.

data.at The file row to start reading data from. When generating the data frame,
the function will ignore all information before this row, and attempt to
include all data from this row onwards.

date Name of the field containing the date. This can be a date e.g. 10/12/2012
or a date-time format e.g. 10/12/2012 01:00.

date.format The format of the date. This is given in ‘R’ format according tostrptime.
For example, a date format such as 1/11/2000 12:00 (day/month/year
hour:minutes) is given the format “%d/%m/%Y %H:%M”. See examples
below and strptime for more details.

time The name of the column containing a time — if there is one. This is
used when a time is given in a separate column and date contains no
information about time.

24

2 Getting data into openair

time.format If there is a column for time then the time format must be supplied.
Common examples include “%H:%M” (like 07:00) or an integer giving
the hour, in which case the format is “%H”. Again, see examples below.

tzone The time zone for the data. In order to avoid the complexities of DST
(daylight savings time), openair assumes the data are in GMT (UTC) or a
constant offset from GMT. Users can set a positive or negative offset in
hours from GMT. For example, to set the time zone of the data to the time
zone in New York (EST, 5 hours behind GMT) settzone = "Etc/GMT+5".
To set the time zone of the data to Central European Time (CET, 1 hour
ahead of GMT) set tzone = "Etc/GMT-1". Note that the positive and
negative offsets are opposite to what most users expect.

na.strings Strings of any terms that are to be interpreted as missing (NA). For ex-
ample, this might be “-999”, or “n/a” and can be of several items.

quote String of characters (or character equivalents) the imported file may use
to represent a character field.

ws Name of wind speed field if present if different from “ws” e.g. ws =

"WSPD".

wd Name of wind direction field if present if different from “wd” e.g. wd =

"WDIR".

correct.time Numerical correction (in seconds) for imported date. Default NULL
turns this option off. This can be useful if the hour is represented as 1 to
24 (rather than 0 to 23 assumed by R). In which case correct.time =

-3600will correct the hour.

... Other arguments passed to read.table.

2.3 Importing UK Air Quality Data

Whileimport is a useful function for ad-hoc data import, much of the data stored in the
UK and beyond resides on central repositories that are available over the Internet. The
UK AURN archive and King’s College London’s London Air Quality Network (LAQN)
are two important and large databases of information that allow free public access.
Storing and managing data in this way has many advantages including consistent data
format, and underlying high quality methods to process and store the data.

openair has a family of functions that provide users with extensive access to UK air
quality data. Ricardo Energy & Environment have provided .RData files (R workspaces)
for several important air quality networks in the UK. These files are updated on a daily
basis. This approach requires a link to the Internet to work. The networks include:

importAURN For importing data from the UK national network called Automatic Ur-
ban and Rural Network. This is the main UK network.

importSAQN For accessing data from Air Quality Scotland network.

importWAQN For accessing data from the Air Quality Wales network.

importAQE For accessing data from the Air Quality England network of sites.

25

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
http://www.scottishairquality.scot/
https://airquality.gov.wales/
https://www.airqualityengland.co.uk/

2 Getting data into openair

importEurope A simplified version of a function to give basic access to hourly Euro-
pean data based on Stuart Grange’s saqgetr package — see https://github.
com/skgrange/saqgetr. The openair function has a similar approach to other
openair import functions i.e. requires a site code(s) and year(s) to be supplied.

importKCL For accessing data from the sites operated by King’s College London,
primarily including the The London Air Quality Network.

Many users download hourly data from the air quality archive athttp://www.airquality.
co.uk. Most commonly, the data are emailed to the user as .csv files and have a fixed
format as shown below. This is a useful facility but does have some limitations and
frustrations, many of which have been overcome using a new way of storing and down-
loading the data described below.

There are several advantages over the web portal approach where .csv files are
downloaded. First, it is quick to select a range of sites, pollutants and periods (see
examples below). Second, storing the data as .RData objects is very efficient as they are
about four times smaller than .csv files (which are already small) — which means the
data downloads quickly and saves bandwidth. Third, the function completely avoids
any need for data manipulation or setting time formats, time zones etc. Finally, it
is easy to import many years of data. The final point makes it possible to download
several long time series in one go.

The site codes and pollutant names can be upper or lower case. The function will
issue a warning when data less than six months old is downloaded, which may not be
ratified. Type ?importAURN for a full listing of sites and their codes.

The importAURN function for example has the following options.2

site Site code of the AURN site to import e.g. “my1” is Marylebone Road.
Several sites can be imported with site = c("my1", "nott") — to
import Marylebone Road and Nottingham for example.

year Year or years to import. To import a sequence of years from 1990 to
2000 use year = 1990:2000. To import several specfic years use year
= c(1990, 1995, 2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants ffrom a site.
To import only NOx and NO2 for example use pollutant = c("nox",

"no2").

hc A few sites have hydrocarbon measurements available and setting hc =

TRUE will ensure hydrocarbon data are imported. The default is however
not to as most users will not be interested in using hydrocarbon data and
the resulting data frames are considerably larger.

meta Should meta data be returned? If TRUE the site type, latitude and longi-
tude are returned.

to_narrow By default the returned data has a column for each pollutant/variable.
Whento_narrow = TRUE the data are stacked into a narrow format with
a column identifying the pollutant name.

verbose Should the function give messages when downloading files? Default is
FALSE.

2The other functions have similar options.

26

https://github.com/skgrange/saqgetr
https://github.com/skgrange/saqgetr
https://www.londonair.org.uk/LondonAir/Default.aspx
http://www.airquality.co.uk
http://www.airquality.co.uk

2 Getting data into openair

Some examples of usage are shown below.

import all pollutants from Marylebone Rd from 1990:2009

mary <- importAURN(site = "my1", year = 2000:2009)

import nox, no2, o3 from Marylebone Road and Nottingham Centre for 2000

thedata <- importAURN(site = c("my1", "nott"), year = 2000,

pollutant = c("nox", "no2", "o3"))

import over 20 years of Mace Head O3 data!

o3 <- importAURN(site = "mh", year = 1987:2009)

import hydrocarbon data from Marylebone Road

hc <- importAURN(site = "my1", year = 2008, hc = TRUE)

By default the function returns data where each pollutant is in a separate column.
However, it is possible to return the data in a tidy format (column for pollutant name,
column for value) by using the option to_narrow:

my1 <- importAURN("my1", year = 2018, to_narrow = TRUE)

2.4 Site Meta Data

Users can access the details of air pollution monitoring sites using the importMeta
function. The user only needs to provide the network name and (optionally) whether all
data should be returned. By default only site type, latitude and longitude are returned.

The function has the following options.

source The data source for the meta data. Can be “aurn”, “kcl”, “saqn” (or
“aqd”), “aqe” or “europe”; upper or lower case.

all When all = FALSE only the site code, site name, latitude and longitude
and site type are imported. Setting all = TRUE will import all avail-
able meta data and provide details (when available) or the individual
pollutants measured at each site.

library(tidyverse)

aurn_meta <- importMeta(source = "aurn")

aurn_meta

A tibble: 244 x 4

site code latitude longitude

<chr> <chr> <dbl> <dbl>

1 London A3 Roadside A3 51.4 -0.292

2 Aberdeen ABD 57.2 -2.09

3 Aberdeen Union Street Roadside ABD7 57.1 -2.11

4 Aberdeen Wellington Road ABD8 57.1 -2.09

5 Auchencorth Moss ACTH 55.8 -3.24

6 Birmingham Acocks Green AGRN 52.4 -1.83

7 Aston Hill AH 52.5 -3.03

8 Armagh Roadside ARM6 54.4 -6.65

9 Ballymena Antrim Road BAAR 54.9 -6.27

10 Ballymena Ballykeel BALM 54.9 -6.25

... with 234 more rows

Or return much more detailed data:

aurn_meta <- importMeta(source = "aurn", all = TRUE)

aurn_meta

27

2 Getting data into openair

And to include basic meta data when importing air pollution data:

kc1 <- importAURN(site = "kc1", year = 2018, meta = TRUE)

glimpse(kc1)

Observations: 8,760

Variables: 16

$ date <dttm> 2018-01-01 00:00:00, 2018-01-01 01:00:00, 2018-01-01 02:...

$ code <chr> "KC1", "KC1", "KC1", "KC1", "KC1", "KC1", "KC1", "KC1", "...

$ site <chr> "London N. Kensington", "London N. Kensington", "London N...

$ o3 <dbl> 70.98040, 67.52118, 69.69982, 70.49810, 71.74542, 70.4981...

$ no2 <dbl> 8.11153, 8.54325, 8.99235, 8.93852, 6.94570, 7.26948, 10....

$ co <dbl> 0.114872, 0.111043, 0.112000, 0.100512, 0.091897, 0.10051...

$ so2 <dbl> NA, 2.40953, 2.49812, 2.12606, 2.39181, 2.28551, 2.23236,...

$ pm10 <dbl> 12.425, 7.375, 5.625, 3.200, 3.875, 5.050, 9.400, 12.400,...

$ nox <dbl> 8.32519, 8.89934, 9.41967, 9.36584, 7.21277, 7.64339, 10....

$ no <dbl> 0.13935, 0.23224, 0.27869, 0.27869, 0.17418, 0.24386, 0.1...

$ pm2.5 <dbl> 8.892, 4.363, 3.137, 1.792, 2.146, 2.618, 4.575, 6.109, 7...

$ ws <dbl> 5.5, 5.0, 4.8, 4.8, 5.3, 5.3, 4.4, 3.0, 2.6, 1.6, 1.6, 1....

$ wd <dbl> 263.3, 256.4, 251.0, 246.8, 248.4, 248.0, 245.8, 239.5, 2...

$ latitude <dbl> 51.52105, 51.52105, 51.52105, 51.52105, 51.52105, 51.5210...

$ longitude <dbl> -0.213492, -0.213492, -0.213492, -0.213492, -0.213492, -0...

$ site.type <chr> "Urban Background", "Urban Background", "Urban Background...

2.5 Importing data from the CERC ADMS modelling systems

The ADMS suite of models is widely used in the UK and beyond. These models are
used for a wide range of purposes and one of the benefits of openair is that many of the
functions are potentially useful for model evaluation. One of the principal benefits
of linking openair with the ADMS models is the access to meteorological data that is
possible. In the UK, the Met Office provides meteorological data in a specific format for
use in ADMS models.3 It is useful to be able to easily import the meteorological data
into openair because analyses are often limited by the availability of representative
meteorological data. However, the use of directly measured input data is only one
possibility. When ADMS models run they use a sophisticated meteorological pre-
processor to calculate other quantities that are not directly measured, but are important
to dispersion modelling. Examples of these other variables are boundary layer height
and surface sensible heat flux. These and many other quantities are calculated by the
met pre-processor and output to a .MOP file. Access to these other quantities greatly
increases the potential for model evaluation and in general provides a much richer
source of information for analysis.

Many users may have meteorological data in the ADMS format. This is the format
provided by the UK Met Office for the ADMS model. A an example of the format is
shown in Figure 2.1, which is a simple text file. The importADMSMet function imports
such data into R in a format suitable for openair.

This can be done, for example by:

met <- importADMS("d:/temp/heathrow01.met")

If no file name is supplied, the user will be prompted for one.
Sometimes it may be necessary to import several years. Here’s one approach for

doing so assuming the files are in a folder d:/metdata and all have a file extension.met:

3Specifically hourly sequential data and not statistical summaries of data.

28

2 Getting data into openair

FIGURE 2.1 Typical format of an hourly ADMS met file.

all.met <- lapply(list.files(path = "d:/metdata", pattern =".met",

full.names = TRUE),

function(.file) importADMS(.file))

all.met <- do.call(rbind.fill, all.met)

all.metwill then contain met data for all years in one data frame.

2.5.1 An example considering atmospheric stability

One of the significant benefits of working with ADMS output files is having access to
the outputs from the meteorological pre-processor. ADMS uses readily available mete-
orological variables such as wind speed, temperature and cloud cover and calculates
parameters that are used in the dispersion algorithms. When ADMS is run it produces
a .MOP file with all these inputs and processed quantities in. Access to parameters
such as boundary layer height, Monin-Obukov length and so on can greatly increase
the opportunities for insightful data analysis using existing openair functions. This is
almost certainly an area we will cover in more depth later; but for now, here are a few
examples.

We are going to use a .MOP file from 2001 following some dispersion modelling of
stacks in London. The interest here is to use the results from the met pre-processor
to better understand sources in the east of London at the Thurrock background site.
First, we can import the Thurrock data (type ?importKCL for site code listing) using
the importKCL function:

tk1 <- importKCL(site = "tk1", year = 2001)

29

2 Getting data into openair

show first few lines of tk1

head(tk1)

date nox no2 o3 so2 co pm10_raw pm10

41862 2001-01-01 00:00:00 NA NA NA NA NA 5.2 5.2

41863 2001-01-01 01:00:00 7.68 5.76 50 46.40133 0.232 11.7 11.7

41864 2001-01-01 02:00:00 5.76 3.84 52 57.55550 0.232 7.8 7.8

41865 2001-01-01 03:00:00 5.76 3.84 56 14.72350 0.232 5.2 5.2

41866 2001-01-01 04:00:00 1.92 1.92 54 10.70800 0.232 10.4 10.4

41867 2001-01-01 05:00:00 3.84 1.92 54 10.70800 0.232 14.3 14.3

site code

41862 Thurrock - London Road (Grays) TK1

41863 Thurrock - London Road (Grays) TK1

41864 Thurrock - London Road (Grays) TK1

41865 Thurrock - London Road (Grays) TK1

41866 Thurrock - London Road (Grays) TK1

41867 Thurrock - London Road (Grays) TK1

Next we will import the .MOP file. The function automatically lists all the variables
imported:

met <- importADMS("~/My Drive/openair/Data/met01.MOP")

date1 date2 line run

"POSIXct" "POSIXt" "integer" "factor"

fr ws ws.gstar wd

"numeric" "numeric" "numeric" "numeric"

delta.wd ftheta0 k recip.lmo

"numeric" "numeric" "numeric" "numeric"

h nu delta.theta temp

"numeric" "numeric" "numeric" "numeric"

p cl albedo.met albedo.disp

"numeric" "numeric" "numeric" "numeric"

alpha.met alpha.disp tsea delta.t

"numeric" "numeric" "numeric" "numeric"

sigma.theta rhu q0 lambdae

"numeric" "numeric" "numeric" "numeric"

rhu.1 drhdzu process.ws.star process.ws.g

"numeric" "numeric" "numeric" "numeric"

process.ws.gstar process.wd.0 process.wd.g process.delta.wd

"numeric" "numeric" "numeric" "numeric"

process.wd.sec process.wstar process.ftheta0 process.k

"numeric" "numeric" "numeric" "numeric"

process.recip.lmo process.h process.nu process.delta.theta

"numeric" "numeric" "numeric" "numeric"

process.temp process.p process.delta.t process.sigma.theta

"numeric" "numeric" "numeric" "numeric"

process.q0 process.lambdae process.rhu process.drhdzu

"numeric" "numeric" "numeric" "numeric"

process.z0.met process.z0.disp

"numeric" "numeric"

Now we need to merge these two files using ‘date’ as the common field using the
merge function, which is part of the base R system:

tk1 <- merge(tk1, met, by = "date")

Now we have a data frame with all the pollution measurements and meteorological
variables matched up. A nice first example is to make use of variables that are not
readily available. In particular, those representing atmospheric stability are very useful.
So, let’s see what a polar plot looks like split by different levels of the atmospheric

30

2 Getting data into openair

polarPlot(tk1, pollutant = "so2", type = "process.recip.lmo",

min.bin = 2)

2

4

6 ws

8

10

12

W

S

N

E

process.recip.lmo −0.333 to −0.0009

2

4

6 ws

8

10

12

W

S

N

E

process.recip.lmo −0.0009 to 0.0039

2

4

6 ws

8

10

12

W

S

N

E

process.recip.lmo 0.0039 to 0.0133

mean

SO2

5

10

15

20

FIGURE 2.2 Use of the importADMS function to access atmospheric stability parameters for use
in a polar plot. In this case 1

LMO
is split by three different levels, approximately corresponding

to unstable, neutral and stable atmospheric conditions.

stability parameter the reciprocal of the Monin-Obukov length, 1
LMO

. This has the
name process.recip.lmo. Note we also set the option min.bin = 2, to ensure the
output is not overly affected by a single high concentration.

The results are shown in Figure 2.2. So what does this tell us? Well, first 1
LMO

has
been split into three different levels (broadly speaking the more negative the value
of 1

LMO
the more unstable the atmosphere is and the more positive 1

LMO
is, the more

stable the atmosphere is). In Figure 2.2 the plot shows what we might think of unstable,
neutral and stable atmospheric conditions.

The first thing to note from Figure 2.2 is that lower wind speeds are associated with
stable and unstable atmospheric conditions — shown by the smaller plot areas for
these conditions (neutral conditions have a larger ‘blob’ extending to higher wind
speeds). This is entirely expected. Starting with the unstable conditions (top left
panel), SO2 concentrations are dominated by easterly and south-easterly winds. These
concentrations are likely dominated by tall stack emissions from those wind directions.
For stable conditions (plot at the bottom), three sources seem to be important. There is
a source to the north-east, the south-east and higher concentrations for very low wind
speeds. The latter is likely due to road vehicle emissions of SO2. The neutral conditions
are perhaps revealing two sources to the south-east. Taken together, plotting the data
in this way is beginning to reveal a potentially large number of sources in the area.

31

3 The summaryPlot function

Combined with the results from a dispersion model, or knowledge of local stacks, there
is a good chance that these sources can be identified.

A polar plot on its own does not reveal such detailed information. Try it:

polarPlot(tk1, pollutant = "so2")

Of course care does need to be exercised when interpreting these outputs, but the
availability of wider range of meteorological data can only improve inference.

Here are some other analyses (not plotted, but easily run). For NOx:

dominated by stable conditions and low

wind speeds (traffic sources)

polarPlot(tk1, pollutant = "nox", type = "process.recip.lmo",

min.bin = 2)

PM10:

complex, but dominated by stable/unstable easterly conditions

polarPlot(tk1, pollutant = "pm10", type = "process.recip.lmo",

min.bin = 2)

How about the ratio of two pollutants, say the ratio of SO2/NOx? First calculate the
ratio:

tk1 <- transform(tk1, ratio = so2 / nox)

evidence of a source with high so2/nox ratio ro the SSE

polarPlot(tk1, pollutant = "ratio", type = "process.recip.lmo",

min.bin = 2)

And don’t forget all the other parameters available such as boundary layer height
etc. — and all the other functions in openair that can be used.

3 The summaryPlot function

The summaryPlot function is a way of rapidly summarising important aspects of data.
While many statistical summaries are possible to calculate with R, the summaryPlot
function has been written specifically for monitoring data. The function provides key
graphical and statistical summaries. summaryPlot has the following options:

mydata A data frame to be summarised. Must contain a date field and at least
one other parameter.

na.len Missing data are only shown with at least na.len contiguous missing
vales. The purpose of setting na.len is for clarity: with long time series
it is difficult to see where individual missing hours are. Furthermore,
setting na.len = 96, for example would show where there are at least 4
days of continuous missing data.

clip When data contain outliers, the histogram or density plot can fail to show
the distribution of the main body of data. Setting clip = TRUE, will
remove the top 1 yield what is often a better display of the overall distri-
bution of the data. The amount of clipping can be set with percentile.

percentile This is used to clip the data. For example, percentile = 0.99 (the
default) will remove the top 1 percentile of values i.e. values greater than
the 99th percentile will not be used.

32

3 The summaryPlot function

type type is used to determine whether a histogram (the default) or a density
plot is used to show the distribution of the data.

pollutant pollutant is used when there is a field site and there is more than one
site in the data frame.

period period is either years (the default) or months. Statistics are calculated
depending on the period chosen.

avg.time This defines the time period to average the time series plots. Can be
“sec”, “min”, “hour”, “day” (the default), “week”, “month”, “quarter”
or “year”. For much increased flexibility a number can precede these
options followed by a space. For example, a timeAverage of 2 months
would be avg.time = "2 month".

print.datacap Should the data capture % be shown for each period?

breaks Number of histogram bins. Sometime useful but not easy to set a single
value for a range of very different variables.

col.trend Colour to be used to show the monthly trend of the data, shown as a
shaded region. Type colors() into R to see the full range of colour
names.

col.data Colour to be used to show the presence of data. Type colors() into R to
see the full range of colour names.

col.mis Colour to be used to show missing data.

col.hist Colour for the histogram or density plot.

cols Predefined colour scheme, currently only enabled for "greyscale".

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time
appropriately to the range being considered. This does not always work
as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters. Commonly used examples include the
axis and title labelling options (such as xlab, ylab and main), which
are all passed to the plot via quickText to handle routine formatting. As
summaryPlot has two components, the axis labels may be a vector. For
example, the default case (type = "histogram") sets y labels equiva-
lent to ylab = c("", "Percent of Total").

It is called in a very simple way:4
the

summaryPlot

function should

be used for

checking input

data before

applying other

functions

An example of using summaryPlot shown in Figure 3.1. For each numerical variable
in a data frame, a plot is made, shown in the left panel, showing where data exist (blue)
and missing data (red). For clarity, only running sequences of≥ 24 hours of missing

4Note that a data frame mydata is automatically loaded when loading the openair package. The data set
consists of several years of pollutant data from Marylebone Road in London.

33

3 The summaryPlot function

library(openair) # load openair

data(mydata) ## make sure data that comes with openair is loaded

summaryPlot(mydata)

date1 date2 ws wd nox no2 o3 pm10

"POSIXct" "POSIXt" "numeric" "integer" "integer" "integer" "integer" "integer"

so2 co pm25

"numeric" "numeric" "integer"

date

1998 1999 2000 2001 2002 2003 2004 2005

missing = 5227 (7.5%)
min = 0
max = 20.2

mean = 4.5
median = 4.1

95th percentile = 9

96.5 % 98.2 % 98.7 % 99.8 % 99.9 % 100 % 100 % 47.2 %

w
in

d
sp

d.

missing = 4814 (6.9%)
min = 0
max = 360

mean = 200
median = 210

95th percentile = 340

98.6 % 99.7 % 100 % 99.9 % 99.7 % 100 % 100 % 47.2 %

w
in

d
di

r.

missing = 7018 (10%)
min = 0
max = 1144

mean = 178.8
median = 153

95th percentile = 414

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.9 % 47.2 %

N
O

x

missing = 7033 (10%)
min = 0
max = 206

mean = 49.1
median = 46

95th percentile = 93

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.8 % 47.2 %

N
O

2

missing = 7184 (10.2%)
min = 0
max = 70

mean = 7.1
median = 4

95th percentile = 23

86.8 % 95.6 % 98.8 % 96.3 % 97 % 96.3 % 100 % 47.2 %

O
3

missing = 6757 (9.6%)
min = 1
max = 801

mean = 34.4
median = 31

95th percentile = 64

98.5 % 94.8 % 98.6 % 89.1 % 98.1 % 98.7 % 98 % 47.1 %

P
M

10

missing = 15045 (21.5%)
min = 0
max = 63.2

mean = 4.8
median = 4

95th percentile = 11.3

93.9 % 95.3 % 95.8 % 84.5 % 96.5 % 96.1 % 66.2 % 0 %

S
O

2

missing = 6531 (9.3%)
min = 0
max = 19.7

mean = 1.5
median = 1.1

95th percentile = 3.7

98.4 % 95.4 % 95.9 % 96.4 % 97.5 % 98.4 % 96.2 % 47.3 %

C
O

missing = 13370 (19.1%)
min = 0
max = 398

mean = 21.7
median = 20

95th percentile = 43

55.3 % 82.2 % 89.8 % 90.3 % 92.9 % 93.3 % 95.9 % 47.5 %

P
M

2.
5

value

P
er

ce
nt

 o
f T

ot
al

0
5

10

0 2 4 6 8 10 12

0
4
8

12

0 100 200 300

0
4
8

12

0 100 300 500

0
5

10

0 20 40 60 80 120

0
10
20

0 10 20 30

0
5

10

0 20 40 60 80

0
5

10

0 5 10 15

0
5

10
15

0 1 2 3 4 5

0
4
8

12

0 10 20 30 40 50

FIGURE 3.1 Use of summaryPlot function applied to the mydata data frame. The plots in the
left panel show the time series data, where blue shows the presence of data and red missing
data. The daily mean values are also shown in pale yellow scaled to cover the range in the data
from zero to the maximum daily value. As such, the daily values are indicative of an overall
trend rather than conveying quantitative information. For each pollutant, the overall summary
statistics are given. For each year the percentage data capture is shown in green font. The
panels on the right show the distribution of each species using a histogram plot.

34

3 The summaryPlot function

data are shown. It is easy to see therefore that the beginning part of the time series
for PM2.5 is missing and the end part of SO2. It is also clear that the time series stops
half way through 2005. Also shown in each panel are statistical summaries, which
include: number of missing points (with percentage shown in parentheses), minimum,
maximum, mean, median and the 95th percentile. For each year, the data capture (%)
is shown in green font. So, for example, the data capture for NOx in 2000 was 96.3 %.

The pale yellow line gives an indication of the variation in values over time expressed
as a daily mean. It is in indication because no numerical scale is given. The data are
formatted so that 0 is placed at the lower part of the scale (top of the data indicator
strip) and the maximum value at the top of the graph. The intention is to give the user
a feel for how the data vary over the length of the time series.

The plots shown in the right panel are histograms. It is also possible to show density
plots. A density plot is somewhat similar to a histogram but avoids having to arbitrarily
select a ‘bin’ size. The choice of bin size in histograms can often lead to a misleading
impression of how data are distributed — simply because of the bin size chosen. The
default behaviour of this function ‘clips’ the data and excludes the highest 1 % of values.
This is done to help highlight the shape of the bulk of the data and has the effect of
removing the long tail, typical of air pollution concentration distributions.

It is possible, however, not to clip the histogram or density plot data and select various
other options:

summaryPlot(mydata, clip = FALSE) # do not clip density plot data

summaryPlot(mydata, percentile = 0.95) # exclude highest 5 % of data etc.

show missing data where there are at least 10 continuous missing values

summaryPlot(mydata, na.len = 10)

summaryPlot(mydata, col.data = "green") # show data in green

summaryPlot(mydata, col.mis = "yellow") # show missing data in yellow

summaryPlot(mydata, col.dens = "black") # show density plot line in black

Depending on the data available, there may be too many plots shown on one page,
making it difficult to see the detail. Currently, the simplest way to reduce what is
shown is to limit the data to be plotted. In the code below, for example, only columns 2
and 5 to 7 are plotted (column 1 in this case is the date and must always be supplied).
Alternatively, the subset function could be used:

summaryPlot(mydata[, c(1, 2, 5:7)]) # only plot columns 2 and 5-7

summaryPlot(subset(mydata, select = c(date, nox, no2, co))) # alternative selecting

So far the summaryPlot function has been described and used in terms of plotting
many variables from a single site. What happens if there is more than one site? Because
the plot already produces a dense amount of information it does not seem sensible
to plot several variables across several sites at the same time. Therefore, if there is
a site field, summaryPlotwill provide summary data for a single pollutant across all
sites. See ?summaryPlot for more details.

Use summaryPlot first

It is recommended that the summaryPlot function is used before moving on to using

35

4 The cutData function

the other functions detailed below. One of the reasons (apart from getting to know

your data) is that it also acts as a way of ensuring that other functions should work.

For example, if wind speed was missing, or was formatted as a character rather than a

number, it will not show up in the summary plot. In time we intend to use this function to

carry out many data checks and issue warnings if problems are detected.

4 The cutData function

The cutData function is a utility function that is called by most other functions but is
useful in its own right. It’s main use is to partition data in many ways, many of which
are built-in to openair.

Note that all the date-based types e.g. month/year are derived from a column date.
If a user already has a column with a name of one of the date-based types it will not be
used.

For example, to cut data into seasons:

mydata <- cutData(mydata, type = "season")

head(mydata)

A tibble: 6 x 11

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.72 3.37 NA

2 1998-01-01 01:00:00 2.16 230 NA NA NA 37 NA NA NA

3 1998-01-01 02:00:00 2.76 190 NA NA 3 34 6.83 9.60 NA

4 1998-01-01 03:00:00 2.16 170 493 52 3 35 7.66 10.2 NA

5 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.07 8.91 NA

6 1998-01-01 05:00:00 3 190 264 42 0 16 5.50 3.05 NA

... with 1 more variable: season <ord>

This adds a new field ‘season’ that is split into four seasons. There is an option
hemisphere that can be used to use southern hemisphere seasons when set ashemisphere
= "southern".

The type can also be another field in a data frame e.g.

mydata <- cutData(mydata, type = "pm10")

head(mydata)

A tibble: 6 x 10

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <fct> <dbl> <dbl> <int>

1 1998-01-01 00:00:00 0.6 280 285 39 1 pm10 22 t~ 4.72 3.37 NA

2 1998-01-01 01:00:00 2.16 230 NA NA NA pm10 31 t~ NA NA NA

3 1998-01-01 02:00:00 2.76 190 NA NA 3 pm10 31 t~ 6.83 9.60 NA

4 1998-01-01 03:00:00 2.16 170 493 52 3 pm10 31 t~ 7.66 10.2 NA

5 1998-01-01 04:00:00 2.4 180 468 78 2 pm10 31 t~ 8.07 8.91 NA

6 1998-01-01 05:00:00 3 190 264 42 0 pm10 1 to~ 5.50 3.05 NA

data(mydata) ## re-load mydata fresh

This divides PM10 concentrations into four quantiles — roughly equal numbers of
PM10 concentrations in four levels.

Most of the time users do not have to call cutData directly because most functions
have a type option that is used to call cutData directly e.g.

36

5 The windRose and pollutionRose functions

polarPlot(mydata, pollutant = "so2", type = "season")

However, it can be useful to call cutData before supplying the data to a function in
a few cases. First, if one wants to set seasons to the southern hemisphere as above.
Second, it is possible to override the division of a numeric variable into four quantiles
by using the option n.levels. More details can be found in the cutData help file.

The cutData function has the following options:

x A data frame containing a field date.

type A string giving the way in which the data frame should be split. Pre-
defined values are: “default”, “year”, “hour”, “month”, “season”, “week-
day”, “site”, “weekend”, “monthyear”, “daylight”, “dst” (daylight saving
time).
type can also be the name of a numeric or factor. If a numeric column
name is supplied cutDatawill split the data into four quantiles. Factors
levels will be used to split the data without any adjustment.

hemisphere Can be "northern" or "southern", used to split data into seasons.

n.levels Number of quantiles to split numeric data into.

start.day What day of the week should the type = "weekday" start on? The user
can change the start day by supplying an integer between 0 and 6. Sunday
= 0, Monday = 1, …For example to start the weekday plots on a Saturday,
choose start.day = 6.

is.axis A logical (TRUE/FALSE), used to request shortened cut labels for axes.

local.tz Used for identifying whether a date has daylight savings time (DST) ap-
plied or not. Examples includelocal.tz = "Europe/London",local.tz
= "America/New_York" i.e. time zones that assume DST. http://en.
wikipedia.org/wiki/List_of_zoneinfo_time_zones shows time zones
that should be valid for most systems. It is important that the original
data are in GMT (UTC) or a fixed offset from GMT. See import and the
openair manual for information on how to import data and ensure no
DST is applied.

latitude The decimal latitude used in type = "daylight".

longitude The decimal longitude. Note that locations west of Greenwich are nega-
tive.

... All additional parameters are passed on to next function(s).

5 The windRose and pollutionRose functions

5.1 Purpose

see also

polarFreq

percentileRose

The wind rose is a very useful way of summarising meteorological data. It is particularly
useful for showing how wind speed and wind direction conditions vary by year. The
windRose function can plot wind roses in a variety of ways: summarising all available
wind speed and wind direction data, plotting individual wind roses by year, and also
by month. The latter is useful for considering how meteorological conditions vary by
season.

37

http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones
http://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones

5 The windRose and pollutionRose functions

Data are summarised by direction, typically by 45 or 30° and by different wind speed
categories. Typically, wind speeds are represented by different width ‘paddles’. The
plots show the proportion (here represented as a percentage) of time that the wind is
from a certain angle and wind speed range.

The windRose function also calculates the percentage of ‘calms’ i.e. when the wind
speed is zero. UK Met Office data assigns these periods to 0 degrees wind direction
with valid northerly winds being assigned to 360 degrees.

The windRose function will also correct for bias when wind directions are rounded
to the nearest 10 degrees but are displayed at angles that 10 degrees is not exactly
divisible into e.g. 22.5 degrees. When such data are binned, some angles i.e. N, E, S, W
will comprise of three intervals whereas others will comprise of two, which can lead to
significant bias. This issue and its solution is discussed by Droppo and Napier (2008)
and Applequist (2012).5 openair uses a simple method to correct for the bias by globally
rescaling the count in each wind direction bin by the number of directions it represents
relative to the average. Thus, the primary four directions are each reduced by a factor
of 0.75 and the remaining 12 directions are multiplied by 1.125.

5.2 Options available

The windRose function has the following options:

mydata A data frame containing fields ws and wd

ws Name of the column representing wind speed.

wd Name of the column representing wind direction.

ws2 The user can supply a second set of wind speed and wind direction values
with which the first can be compared. See details below for full explana-
tion.

wd2 see ws2.

ws.int The Wind speed interval. Default is 2 m/s but for low met masts with
low mean wind speeds a value of 1 or 0.5 m/s may be better. Note, this
argument is superseded in pollutionRose. See breaks below.

angle Default angle of “spokes” is 30. Other potentially useful angles are 45 and
10. Note that the width of the wind speed interval may need adjusting
using width.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.

5Thanks to Philippe Barnéoud of Environment Canada for pointing this issue out.

38

5 The windRose and pollutionRose functions

Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

bias.corr When angle does not divide exactly into 360 a bias is introduced in the
frequencies when the wind direction is already supplied rounded to the
nearest 10 degrees, as is often the case. For example, if angle = 22.5,
N, E, S, W will include 3 wind sectors and all other angles will be two. A
bias correction can made to correct for this problem. A simple method
according to Applequist (2012) is used to adjust the frequencies.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet”, “hue” and user defined. For user defined the user can supply
a list of colour names recognised by R (type colours() to see the full
list). An example would be cols = c("yellow", "green", "blue",

"black").

grid.line Grid line interval to use. IfNULL, as in default, this is assigned bywindRose
based on the available data range. However, it can also be forced to a
specific value, e.g. grid.line = 10. grid.line can also be a list to
control the interval, line type and colour. For example grid.line =

list(value = 10, lty = 5, col = "purple").

width For paddle = TRUE, the adjustment factor for width of wind speed in-
tervals. For example, width = 1.5will make the paddle width 1.5 times
wider.

seg For pollutionRose seg determines with width of the segments. For
example, seg = 0.5will produce segments 0.5 * angle.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

breaks Most commonly, the number of break points for wind speed in windRose
or pollutant in pollutionRose. For windRose and the ws.int default
of 2 m/s, the default, 4, generates the break points 2, 4, 6, 8 m/s. For
pollutionRose, the default, 6, attempts to breaks the supplied data at
approximately 6 sensible break points. However, breaks can also be
used to set specific break points. For example, the argument breaks
= c(0, 1, 10, 100) breaks the data into segments <1, 1-10, 10-100,
>100.

offset The size of the ’hole’ in the middle of the plot, expressed as a percentage
of the polar axis scale, default 10.

normalise If TRUE each wind direction segment of a pollution rose is normalised to
equal one. This is useful for showing how the concentrations (or other
parameters) contribute to each wind sector when the proprtion of time
the wind is from that direction is low. A line showing the probability that
the wind directions is from a particular wind sector is also shown.

max.freq Controls the scaling used by setting the maximum value for the radial
limits. This is useful to ensure several plots use the same radial limits.

39

5 The windRose and pollutionRose functions

paddle Either TRUE (default) or FALSE. If TRUE plots rose using ‘paddle’ style
spokes. If FALSE plots rose using ‘wedge’ style spokes.

key.header Adds additional text/labels above and/or below the scale key, respec-
tively. For example, passingwindRose(mydata, key.header = "ws")

adds the addition text as a scale header. Note: This argument is passed to
drawOpenKey via quickText, applying the auto.text argument, to han-
dle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

dig.lab The number of signficant figures at which scientific number formatting
is used in break point and key labelling. Default 5.

statistic The statistic to be applied to each data bin in the plot. Options cur-
rently include “prop.count”, “prop.mean” and “abs.count”. The default
“prop.count” sizes bins according to the proportion of the frequency of
measurements. Similarly, “prop.mean” sizes bins according to their rela-
tive contribution to the mean. “abs.count” provides the absolute count
of measurements in each bin.

pollutant Alternative data series to be sampled instead of wind speed. ThewindRose
default NULL is equivalent to pollutant = "ws".

annotate If TRUE then the percentage calm and mean values are printed in each
panel together with a description of the statistic below the plot. If " "

then only the stastic is below the plot. Custom annotations may be added
by setting value to c("annotation 1", "annotation 2").

angle.scale The wind speed scale is by default shown at a 315 degree angle. Some-
times the placement of the scale may interfere with an interesting feature.
The user can therefore set angle.scale to another value (between 0
and 360 degrees) to mitigate such problems. For example angle.scale
= 45will draw the scale heading in a NE direction.

border Border colour for shaded areas. Default is no border.

... For pollutionRose other parameters that are passed on to windRose.
ForwindRoseother parameters that are passed on todrawOpenKey,lattice:xyplot
and cutData. Axis and title labelling options (xlab, ylab, main) are
passed to xyplot via quickText to handle routine formatting.

5.3 Example of use

The function is very simply called as shown for Figure 5.1.
Figure 5.2 highlights some interesting differences between the years. In 2000, for

example, there were a large number of occasions when the wind was from the SSW and
2003 clearly had more occasions when the wind was easterly. It can also be useful to
use type = "month" to get an idea of how wind speed and direction vary seasonally.

40

5 The windRose and pollutionRose functions

windRose(mydata)

Frequency of counts by wind direction (%)

W

S

N

E

5%

10%

15%

20%

25%

mean = 4.4887

calm = 0.3 %

0 to 2 2 to 4 4 to 6 6 to 20.16

(m s−1)

FIGURE 5.1 Use of windRose function to plot wind speed/direction frequencies. Wind speeds
are split into the intervals shown by the scale in each panel. The grey circles show the %
frequencies.

windRose(mydata, type = "year", layout = c(4, 2))

Frequency of counts by wind direction (%)

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.3823

calm = 1.7 %

1998

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.5867

calm = 0.3 %

1999

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.7959

calm = 0.1 %

2000

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.2114

calm = 0.1 %

2001

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 5.0457

calm = 0.2 %

2002

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.3085

calm = 0.1 %

2003

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.1518

calm = 0 %

2004

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.3634

calm = 0 %

2005

0 to 2 2 to 4 4 to 6 6 to 20.16

(m s−1)

FIGURE 5.2 Use of windRose function to plot wind speed/direction frequencies by year. Wind
speeds are split into the intervals shown by the scale in each panel. The grey circles show the
10 and 20 % frequencies.

41

5 The windRose and pollutionRose functions

windRose(mydata, type = "pm10", layout = c(4, 1))

Frequency of counts by wind direction (%)

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 4.373

calm = 0.6 %

PM10 1 to 22

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%
45%

mean = 4.319

calm = 0.2 %

PM10 22 to 31

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%
45%

mean = 4.6381

calm = 0.3 %

PM10 31 to 44

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%
45%

mean = 4.6001

calm = 0.2 %

PM10 44 to 801

0 to 2 2 to 4 4 to 6 6 to 20.16

(m s−1)

FIGURE 5.3 Wind rose for four different levels of PM10 concentration. The levels are defined as
the four quantiles of PM10 concentration and the ranges are shown on each of the plot labels.

The type option is very flexible in openair and can be used to quickly consider the
dependencies between variables. Section 4 describes the basis of this option in openair

plot. As an example, consider the question: what are the meteorological conditions
that control high and low concentrations of PM10? By setting type = "pm10", openair
will split the PM10 concentrations into four quantiles i.e. roughly equal numbers of
points in each level. The plot will then show four different wind roses for each quantile
level, although the default number of levels can be set by the user — see ?cutData for
more details. Figure 5.3 shows the results of setting type = "pm10". For the lowest
concentrations of PM10 the wind direction is dominated by northerly winds, and rela-
tively low wind speeds. By contrast, the highest concentrations (plot furthest right) are
dominated by relatively strong winds from the south-west. It is therefore very easy to
obtain a good idea about the conditions that tend to lead to high (or low) concentrations
of a pollutant. Furthermore, the type option is available in almost all openair functions.

A comparison of the effect that bias has can be seen by plotting the following. Note
the prominent frequencies for W, E and N in particular that are due to the bias issue
discussed by Applequist (2012).

no bias correction

windRose(mydata, angle = 22.5, bias.corr = FALSE)

bias correction (the default)

windRose(mydata, angle = 22.5)

pollutionRose is a variant of windRose that is useful for considering pollutant
concentrations by wind direction, or more specifically the percentage time the con-
centration is in a particular range. This type of approach can be very informative for
air pollutant species, as demonstrated by Ronald Henry and co-authors in Henry et al.
(2009).

You can produce similar pollution roses using the pollutionRose function in recent
versions of openair, e.g. as in Figure 5.4:
pollutionRose is wrapper for windRose. It simply replaces the wind speed data

series in the supplied data set with another variable using the argument pollutant
before passing that on to windRose. It also modifies breaks to estimate a sensible set

42

5 The windRose and pollutionRose functions

pollutionRose(mydata, pollutant = "nox")

Frequency of counts by wind direction (%)

W

S

N

E

5%

10%

15%

20%

25%

mean = 178.62

calm = 0.3 %

NOx

0 to 50

50 to 100

100 to 150

150 to 200

200 to 250

250 to 300

300 to 350

350 to 1092

FIGURE 5.4 NOx pollution rose produced using pollutionRose and default pollutionRose
settings.

pollutionRose(mydata, pollutant = "nox", type = "so2", layout = c(4, 1))

Frequency of counts by wind direction (%)

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 71.389

calm = 0.4 %

SO2 0 to 2.17

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 134.61

calm = 0.5 %

SO2 2.17 to 4

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 212.11

calm = 0.3 %

SO2 4 to 6.5

W

S

N

E
5%

10%
15%

20%
25%

30%
35%

40%

mean = 313.26

calm = 0.4 %

SO2 6.5 to 63.2

NOx

0 to 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350
350 to 1092

FIGURE 5.5 NOx pollution rose conditioned by SO2 concentration.

of break points for that pollutant and uses a slightly different set of default options
(key to right, wedge style plot) but otherwise handles arguments just like the parent
windRose function.

While Figure 5.4 indicates that most higher NOx concentrations are also associated
with the SW, conditioning allows you to be much informative. For example, condition-
ing by SO2 (Figure 5.5) demonstrates that higher NOx concentrations are associated
with the SW and much of the higher SO2 concentrations. However, it also highlights
a notable NOx contribution from the E, most apparent at highest SO2 concentrations
that is obscured in Figure 5.4 by a relatively high NOx background (Figure 5.5).
pollutionRose can also usefully be used to show which wind directions domi-

nate the overall concentrations. By supplying the option statistic = "prop.mean"

(proportion contribution to the mean), a good idea can be gained as to which wind
directions contribute most to overall concentrations, as well as providing informa-

43

5 The windRose and pollutionRose functions

pollutionRose(mydata, pollutant = "nox", statistic = "prop.mean")

Proportion contribution to the mean (%)

W

S

N

E

5%

10%

15%

20%

25%

30%

35%

mean = 178.62

calm = 0.1 %

NOx

0 to 50

50 to 100

100 to 150

150 to 200

200 to 250

250 to 300

300 to 350

350 to 1092

FIGURE 5.6 Pollution rose showing which wind directions contribute most to overall mean
concentrations.

tion on the different concentration levels. A simple plot is shown in Figure 5.6, which
clearly shows the dominance of south-westerly winds controlling the overall mean
NOx concentrations at this site. Indeed, almost half the overall NOx concentration is
contributed by two wind sectors to the south-west. The polarFreq function can also
show this sort of information, but the pollution rose is more effective because both
length and colour are used to show the contribution. These plots are very useful for
understanding which wind directions control the overall mean concentrations.

It is sometimes useful to more clearly understand the contributions from wind direc-
tions that have low frequencies. For example, for a pollution rose of SO2 there are few
occurrences of easterly winds making it difficult to see how the concentration intervals
are made up. Try:

pollutionRose(mydata, pollutant = "so2", seg = 1)

However, each wind sector can be normalised to give a probability between 0 and 1
to help show the variation within each wind sector more clearly. An example is shown
in Figure 5.7 where for easterly winds it is now clearer that a greater proportion of
the time the concentration is made up of high SO2 concentrations. In this plot each
wind sector is scaled between 0 and 1. Also shown with a black like is an indication of
the wind direction frequency to remind us that winds from the east occur with a low
frequency.

44

5 The windRose and pollutionRose functions

pollutionRose(mydata, pollutant = "so2", normalise = TRUE, seg = 1)

Normalised by wind sector

W

S

N

E

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mean = 4.7791

calm = 0.3

SO2

0 to 2

2 to 4

4 to 6

6 to 8

8 to 10

10 to 63.205

FIGURE 5.7 SO2 pollution rose produced usingpollutionRosenormalised by each wind sector.

45

5 The windRose and pollutionRose functions

Comparing two meteorological data sets

The pollutionRose function is also useful for comparing two meteorological data
sets. In this case a ‘reference’ data set is compared with a second data set. There
are many reasons for doing so e.g. to see how one site compares with another or for
meteorological model evaluation (more on that in later sections). In this case,wsandwd
are considered to the the reference data sets with which a second set of wind speed and
wind directions are to be compared (ws2 and wd2). The first set of values is subtracted
from the second and the differences compared. If for example, wd2was biased positive
compared with wd then pollutionRosewill show the bias in polar coordinates. In its
default use, wind direction bias is colour-coded to show negative bias in one colour
and positive bias in another.

Note that this plot is mostly aimed at showing wind direction biases. It does also
show the wind speed bias but only if there is a wind direction bias also. However, in most
practical situations the plot should show both wind speed and direction biases together.
An example of a situation where no wind speed bias would be shown would be for
westerly winds where there was absolutely no bias between two data sets in terms of
westerly wind direction but there was a difference in wind speed. Users should be
aware of this limitation.

In the next example, some artificial wind direction data are generated by adding
a positive bias of 30 degrees with some normally distributed scatter. Also, the wind
speed data are given a positive bias. The results are shown in Figure 5.8. The Figure
clearly shows the mean positive bias in wind direction i.e. the direction is displaced
from north (no bias). The colour scale also shows the extent to which wind speeds
are biased i.e. there is a higher proportion of positively biased wind speeds shown
by the red colour compared with the negatively biased shown in blue. Also shown in
Figure 5.8 is the mean wind speed and direction bias as numerical values.

Note that the type option can be used in Figure 5.8 e.g. type = "month" to split the
analysis in useful ways. This is useful if one wanted to see whether a site or the output
from a model was biased for different periods. For example, type = "daylight"

would show whether there are biases between nighttime and daytime conditions.
An example of using user-supplied breaks is shown in Figure 5.9. In this case six

intervals are chosen including one that spans−0.5 to+0.5 that is useful to show wind
speeds that do not change.

46

5 The windRose and pollutionRose functions

$example of comparing 2 met sites

first we will make some new ws/wd data with a postive bias

mydata <- transform(mydata,

ws2 = ws + 2 * rnorm(nrow(mydata)) + 1,

wd2 = wd + 30 * rnorm(nrow(mydata)) + 30)

need to correct negative wd

id <- which(mydata$wd2 < 0)

mydata$wd2[id] <- mydata$wd2[id] + 360

results show postive bias in wd and ws

pollutionRose(mydata, ws = "ws", wd = "wd", ws2 = "ws2", wd2 = "wd2", grid.line = 5)

Frequency of counts by wind direction (%)

W

S

N

E

5%

10%

15%

20%

mean ws = 1

mean wd = 30.1

wind spd.

−10 to 0

0 to 10

FIGURE 5.8 Pollution rose showing the difference between two meteorological data sets. The
colours are used to show whether data tend to be postively or negatively biased with respect to
the reference data set.

47

5 The windRose and pollutionRose functions

add some wd bias to some nighttime hours

id <- which(as.numeric(format(mydata$date, "%H")) %in% c(23, 1, 2, 3, 4, 5))

mydata$wd2[id] <- mydata$wd[id] + 30 * rnorm(length(id)) + 120

id <- which(mydata$wd2 < 0)

mydata$wd2[id] <- mydata$wd2[id] + 360

pollutionRose(mydata, ws = "ws", wd = "wd", ws2 = "ws2", wd2 = "wd2",

breaks = c(-11, -2, -1, -0.5, 0.5, 1, 2, 11),

cols = c("dodgerblue4", "white", "firebrick"),

grid.line = 5, type = "daylight")

Frequency of counts by wind direction (%)

W

S

N

E

5%

10%

15%

20%

mean ws = 1

mean wd = 32.4

daylight

W

S

N

E

5%

10%

15%

20%

mean ws = 1

mean wd = 72

nighttime

wind spd.

−11 to −2

−2 to −1

−1 to −0.5

−0.5 to 0.5

0.5 to 1

1 to 2

2 to 11

FIGURE 5.9 Pollution rose showing the difference between two meteorological data sets. The
colours are used to show whether data tend to be postively or negatively biased with respect to
the reference data set. In this case the example shows how to use user-defined breaks and split
the data by day/night for a latitude assumed to be London.

48

6 The percentileRose function

6 The percentileRose function

6.1 Purpose

see also

windRose,

polarPlot

pollutionRose

polarAnnulus

percentileRose calculates percentile levels of a pollutant and plots them by wind
direction. One or more percentile levels can be calculated and these are displayed as
either filled areas or as lines.

By default the function plots percentile concentrations in 10 degree segments. Alter-
natively, the levels by wind direction are calculated using a cyclic smooth cubic spline.
The wind directions are rounded to the nearest 10 degrees, consistent with surface
data from the UK Met Office before a smooth is fitted.

ThepercentileRose function compliments other similar functions includingwindRose,
pollutionRose, polarFreq or polarPlot. It is most useful for showing the distri-
bution of concentrations by wind direction and often can reveal different sources e.g.
those that only affect high percentile concentrations such as a chimney stack.

Similar to other functions, flexible conditioning is available through the type option.
It is easy for example to consider multiple percentile values for a pollutant by season,
year and so on. See examples below.

6.2 Options available

The percentileRose function has the following options:

mydata A data frame minimally containing wd and a numeric field to plot —
pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". More than one pollutant
can be supplied e.g. pollutant = c("no2", "o3") provided there is
only one type.

wd Name of the wind direction field.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

percentile The percentile value(s) to plot. Must be between 0–100. If percentile
= NA then only a mean line will be shown.

smooth Should the wind direction data be smoothed using a cyclic spline?

49

6 The percentileRose function

method When method = "default" the supplied percentiles by wind direction
are calculated. When method = "cpf" the conditional probability func-
tion (CPF) is plotted and a single (usually high) percentile level is supplied.
The CPF is defined as CPF = my/ny, where my is the number of samples
in the wind sector y with mixing ratios greater than the overall percentile
concentration, and ny is the total number of samples in the same wind
sector (see Ashbaugh et al., 1985).

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

angle Default angle of “spokes” is when smooth = FALSE.

mean Show the mean by wind direction as a line?

mean.lty Line type for mean line.

mean.lwd Line width for mean line.

mean.col Line colour for mean line.

fill Should the percentile intervals be filled (default) or should lines be drawn
(fill = FALSE).

intervals User-supplied intervals for the scale e.g. intervals = c(0, 10, 30,

50)

angle.scale The pollutant scale is by default shown at a 45 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The
user can therefore set angle.scale to another value (between 0 and
360 degrees) to mitigate such problems. For example angle.scale =

315will draw the scale heading in a NW direction.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

key.header Adds additional text/labels to the scale key. For example, passing op-
tionskey.header = "header", key.footer = "footer"adds addi-
tion text above and below the scale key. These arguments are passed
to drawOpenKey via quickText, applying the auto.text argument, to
handle formatting.

key.footer key.header.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

... Other graphical parameters are passed ontocutDataandlattice:xyplot.
For example,percentileRosepasses the optionhemisphere = "southern"

50

6 The percentileRose function

percentileRose(mydata, pollutant = "o3")

O3

W

S

N

E
0

5

10

15

20

25

30

35

0−25 25−50 50−75 75−90 90−95
percentile

FIGURE 6.1 A percentileRose plot of O3 concentrations at Marylebone Road. The percentile
intervals are shaded and are shown by wind direction. It shows for example that higher con-
centrations occur for northerly winds, as expected at this location. However, it also shows, for
example the actual value of the 95th percentile O3 concentration.

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common graphical
arguments, such as xlim and ylim for plotting ranges and lwd for line
thickness when using fill = FALSE, are passed on xyplot, although
some local modifications may be applied by openair. For example, axis
and title labelling options (such as xlab, ylab and main) are passed to
xyplot via quickText to handle routine formatting.

6.3 Example of use

The first example is a basic plot of percentiles of O3 shown in Figure 6.1.
A slightly more interesting plot is shown in Figure 6.2 for SO2 concentrations. We

also take the opportunity of changing some of the default options. In this case it can be
clearly seen that the highest concentrations of SO2 are dominated by east and south-
easterly winds; likely reflecting the influence of stack emissions in those directions.

A smoothed version of Figure 6.2 can be plotted by:

percentileRose(mydata, pollutant = "so2",

percentile = c(25, 50, 75, 90, 95, 99, 99.9),

col = "brewer1", key.position = "right",

smooth = TRUE)

Lots more insight can be gained by considering how percentile values vary by other
factors i.e. conditioning. For example, what do O3 concentrations look like split by
season and whether it is daylight or nighttime hours? We can set the type to consider
season and whether it is daylight or nighttime.6 This Figure reveals some interesting
features. First, O3 concentrations are higher in the spring and summer and when the
wind is from the north. O3 concentrations are higher on average at this site in spring

6In choosing type = "daylight" the default is to consider a latitude of central London (or close to).
Users can set the latitude in the function call if working in other parts of the world.

51

6 The percentileRose function

percentileRose(mydata, pollutant = "so2",

percentile = c(25, 50, 75, 90, 95, 99, 99.9),

col = "brewer1", key.position = "right", smooth = TRUE)

SO2

W

S

N

E
0

10

20

30

40

50

percentile

0−25

25−50

50−75

75−90

90−95

95−99

99−99.9

FIGURE 6.2 A percentileRose plot of SO2 concentrations at Marylebone Road. The percentile
intervals are shaded and are shown by wind direction. This plot sets some user-defined per-
centile levels to consider the higher SO2 concentrations, moves the key to the right and uses an
alternative colour scheme.

due to the peak of northern hemispheric O3 and to some extent local production. This
may also explain why O3 concentrations are somewhat higher at nighttime in spring
compared with summer. Second, peak O3 concentrations are higher during daylight
hours in summertime when the wind is from the south-east. This will be due to more
local (UK/European) production that is photochemically driven — and hence more
important during daylight hours.

The percentileRose function can also plot conditional probability functions (CPF)
(Ashbaugh et al. 1985). The CPF is defined as CPF =mθ/nθ, wheremθ is the number of
samples in the wind sector θwith mixing ratios greater than some ‘high’ concentration,
and nθ is the total number of samples in the same wind sector. CPF analysis is very
useful for showing which wind directions are dominated by high concentrations and
give the probability of doing so. In openair, a CPF plot can be produced as shown in
Figure 6.4. Note that in these plots only one percentile is provided and the method
must be supplied. In Figure 6.4 it is clear that the high concentrations (greater than the
95th percentile of all observations) is dominated by easterly wind directions. There
are very low conditional probabilities of these concentrations being experienced for
other wind directions.

It is easy to plot several species on the same plot and this works well because they all
have the same probability scale (i.e. 0 to 1). In the example below (not shown) it is easy
to see for each pollutant the wind directions that dominate the contributions to the
highest (95th percentile) concentrations. For example, the highest CO and NOx con-
centrations are totally dominated by south/south-westerly winds and the probability
of their being such high concentrations from other wind directions is effectively zero.

percentileRose(mydata, poll=c("nox", "so2", "o3", "co", "pm10", "pm25"),

percentile = 95, method = "cpf", col = "darkorange",

layout = c(2, 3))

52

6 The percentileRose function

percentileRose(mydata, type = c("season", "daylight"), pollutant = "o3",

col = "Set3", mean.col = "black")

O3

W

S

N

E
0

10

20

30

40

spring (MAM)

da
yl

ig
ht

O3

W

S

N

E
0

10

20

30

40

summer (JJA)

O3

W

S

N

E
0

10

20

30

40

autumn (SON)

O3

W

S

N

E
0

10

20

30

40

winter (DJF)

O3

W

S

N

E
0

10

20

30

40

ni
gh

tti
m

e

O3

W

S

N

E
0

10

20

30

40

O3

W

S

N

E
0

10

20

30

40

O3

W

S

N

E
0

10

20

30

40

0−25 25−50 50−75 75−90 90−95
percentile

FIGURE 6.3 A percentileRose plot of O3 concentrations at Marylebone Road. The percentile
intervals are shaded and are shown by wind direction.The plot show the variation by season
and whether it is nighttime or daylight hours.

percentileRose(mydata, poll="so2", percentile = 95, method = "cpf",

col = "darkorange", smooth = TRUE)

CPF at the 95th percentile (=11.3)

probability

W

S

N

E
0

0.05

0.1

0.15

0.2

FIGURE 6.4 A CPF plot of SO2 concentrations at Marylebone Road.

53

7 The polarFreq function

7 The polarFreq function

7.1 Purpose

see also

windRose

percentileRose

polarPlot

This is a custom-made plot to compactly show the distribution of wind speeds and
directions from meteorological measurements. It is similar to the traditional wind rose,
but includes a number of enhancements to also show how concentrations of pollutants
and other variables vary. It can summarise all available data, or show it by different
time periods e.g. by year, month, day of the week. It can also consider a wide range of
statistics.

7.2 Options available

The polarFreq function has the following options:

mydata A data frame minimally containing ws, wd and date.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox"

statistic The statistic that should be applied to each wind speed/direction bin.
Can be “frequency”, “mean”, “median”, “max” (maximum), “stdev”
(standard deviation) or “weighted.mean”. The option “frequency” (the
default) is the simplest and plots the frequency of wind speed/direction
in different bins. The scale therefore shows the counts in each bin. The
option “mean” will plot the mean concentration of a pollutant (see next
point) in wind speed/direction bins, and so on. Finally, “weighted.mean”
will plot the concentration of a pollutant weighted by wind speed/di-
rection. Each segment therefore provides the percentage overall con-
tribution to the total concentration. More information is given in the
examples. Note that for options other than “frequency”, it is necessary
to also provide the name of a pollutant. See function cutData for further
details.

ws.int Wind speed interval assumed. In some cases e.g. a low met mast, an
interval of 0.5 may be more appropriate.

wd.nint Number of intervals of wind direction.

grid.line Radial spacing of grid lines.

breaks The user can provide their own scale. breaks expects a sequence of
numbers that define the range of the scale. The sequence could represent
one with equal spacing e.g. breaks = seq(0, 100, 10) - a scale from
0-10 in intervals of 10, or a more flexible sequence e.g. breaks = c(0,

1, 5, 7, 10), which may be useful for some situations.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

trans Should a transformation be applied? Sometimes when producing plots
of this kind they can be dominated by a few high points. The default

54

7 The polarFreq function

therefore is TRUE and a square-root transform is applied. This results in a
non-linear scale and (usually) a better representation of the distribution.
If set to FALSE a linear scale is used.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

min.bin The minimum number of points allowed in a wind speed/wind direction
bin. The default is 1. A value of two requires at least 2 valid records in
each bin an so on; bins with less than 2 valid records are set to NA. Care
should be taken when using a value > 1 because of the risk of removing
real data points. It is recommended to consider your data with care. Also,
the polarPlot function can be of use in such circumstances.

ws.upper A user-defined upper wind speed to use. This is useful for ensuring a
consistent scale between different plots. For example, to always ensure
that wind speeds are displayed between 1-10, set ws.int = 10.

offset offset controls the size of the ‘hole’ in the middle and is expressed as a
percentage of the maximum wind speed. Setting a higher offset e.g. 50
is useful for statistic = "weighted.mean" when ws.int is greater
than the maximum wind speed. See example below.

border.col The colour of the boundary of each wind speed/direction bin. The default
is transparent. Another useful choice sometimes is ”white”.

key.header, key.footer Adds additional text/labels to the scale key. For example,
passing optionskey.header = "header", key.footer = "footer"

adds addition text above and below the scale key. These arguments are
passed to drawOpenKey via quickText, applying the auto.text argu-
ment, to handle formatting.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

55

7 The polarFreq function

polarFreq(mydata)

0

5

10

15

20

25

30

35

40

45

W

S

N

E

frequency

0

50

100

150

200
250
300
350
400
450
500
550
600
650

FIGURE 7.1 Use of polarFreq function to plot wind speed/directions. Each cell gives the total
number of hours the wind was from that wind speed/direction in a particular year. The number
of hours is coded as a colour scale shown to the right. The scale itself is non-linear to help show
the overall distribution. The dashed circular grey lines show the wind speed scale. The date
range covered by the data is shown in the strip.

... Other graphical parameters passed onto lattice:xyplot and cutData.
For example, polarFreqpasses the optionhemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common axis and title
labelling options (such as xlab, ylab, main) are passed to xyplot via
quickText to handle routine formatting.

For type = "site", it is necessary to format the input data into columns date, ws,
wd, site (and maybe pollutant). This means that date, for example is repeated a
number of times equal to the number of sites.

7.3 Example of use

This section shows an example output and use, using our data frame mydata. The
function is very simply run as shown in Figure 7.1. This produces the plot shown in
Figure 7.1.

By setting type = "year", the frequencies are shown separately by year as shown
in Figure 7.2, which shows that most of the time the wind is from a south-westerly
direction with wind speeds most commonly between 2–6 m s−1. In 2000 there seemed
to be a lot of conditions where the wind was from the south-west (leading to high
pollutant concentrations at this location). The data for 2003 also stand out due to
the relatively large number of occasions where the wind was from the east. Note the
default colour scale, which has had a square-root transform applied, is used to provide
a better visual distribution of the data.

The polarFreq function can also usefully consider pollutant concentrations. Fig-
ure 7.3 shows the mean concentration of SO2 by wind speed and wind direction and
clearly highlights that SO2 concentrations tend to be highest for easterly winds and for
1998 in particular.

56

7 The polarFreq function

polarFreq(mydata, type = "year")

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2005

frequency

0

20

40

60

80

100

120

140

160

FIGURE 7.2 Use of polarFreq function to plot wind speed/directions by year. Each cell gives
the total number of hours the wind was from that wind speed/direction in a particular year.
The number of hours is coded as a colour scale shown to the right. The scale itself is non-linear
to help show the overall distribution. The dashed circular grey lines show the wind speed scale.

By weighting the concentrations by the frequency of occasions the wind is from a
certain direction and has a certain speed, gives a better indication of the conditions
that dominate the overall mean concentrations. Figure 7.4 shows the weighted mean
concentration of SO2 and highlights that annual mean concentrations are dominated
by south-westerly winds i.e. contributions from the road itself — and not by the fewer
higher hours of concentrations when the wind is easterly. However, 2003 looks inter-
esting because for that year, significant contributions to the overall mean were due to
easterly wind conditions.

These plots when applied to other locations can reveal some useful features about
different sources. For example, it may be that the highest concentrations measured
only occur infrequently, and the weighted mean plot can help show this.

The code required to make Figure 7.3 and 7.4 is shown below.
Users are encouraged to try out other plot options. However, one potentially useful

57

7 The polarFreq function

polarFreq(mydata, pollutant = "so2", type = "year",

statistic = "mean", min.bin = 2)

0
5

10
15

20
25

30
35

40
45

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

mean

SO2

0

2

4

6

8

10

12

14

16

18

20

22

FIGURE 7.3 Use ofpolarFreq function to plot mean SO2 concentrations (ppb) by wind speed/di-
rections and year.

plot is to select a few specific years of user interest. For example, what if you just wanted
to compare two years e.g. 2000 and 2003? This is easy to do by sending a subset of
data to the function. Use here can be made of the openair selectByDate function.

wind rose for just 2000 and 2003

polarFreq(selectByDate(mydata, year = c(2000, 2003)), cols = "jet",

type = "year")

The polarFreq function can also be used to gain an idea about the wind directions
that contribute most to the overall mean concentrations. As already shown, use of
the option statistic = "weighted.mean" will show the percentage contribution
by wind direction and wind speed bin. However, often it is unnecessary to consider
different wind speed intervals. To make the plot more effective, a few options are
set as shown in Figure 7.5. First, the statistic = "weighted.mean" is chosen to
ensure that the plot shows concentrations weighted by their frequency of occurrence

58

7 The polarFreq function

weighted mean SO2 concentrations

polarFreq(mydata, pollutant = "so2", type = "year",

statistic = "weighted.mean", min.bin = 2)

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

contribution

(%)

SO2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 7.4 Use of polarFreq function to plot weighted mean SO2 concentrations (ppb) by
wind speed/directions and year.

of wind direction. For this plot, we are mostly interested in just the contribution by
wind direction and not wind speed. Setting the ws.int to be above the maximum wind
speed in the data set ensures that all data are shown in one interval. Rather than having
a square-root transform applied to the colour scale, we choose to have a linear scale by
setting trans = FALSE. Finally, to show a ‘disk’, the offset is set at 80. Increasing
the value of the offset will narrow the disk.

While Figure 7.5 is useful — e.g. it clearly shows that concentrations of NOx at this
site are totally dominated by south-westerly winds, the use of pollutionRose for this
type of plot is more effective, as shown in Section 5.

59

8 The polarPlot and polarCluster functions

polarFreq(mydata, pollutant = "nox", ws.int = 30, statistic = "weighted.mean",

offset = 80, trans = FALSE, col = "heat")

W

S

N

E

contribution
(%)

NOx

0

1

2

3

4

5

6

7

8

FIGURE 7.5 The percentage contribution to overall mean concentrations of NOx at Marylebone
Road.

8 The polarPlot and polarCluster functions

8.1 Purpose

see also

polarFreq

polarAnnulus

percentileRose

pollutionRose

The polarPlot function plots a bivariate polar plot of concentrations. Concentrations
are shown to vary by wind speed and wind direction. In many respects they are similar
to the plots shown in (§7) but include some additional enhancements. These enhance-
ments include: plots are shown as a continuous surface and surfaces are calculated
through modelling using smoothing techniques. These plots are not entirely new as
others have considered the joint wind speed-direction dependence of concentrations
(see for example Yu et al. (2004)). However, plotting the data in polar coordinates
and for the purposes of source identification is new. Furthermore, the basic polar plot
is since been enhanced in many ways as described below. Recent publications that
describe or use the technique are Carslaw et al. (2006) and Westmoreland et al. (2007).
These plots have proved to be useful for quickly gaining a graphical impression of
potential sources influences at a location.

The polarPlot function is described in more detail in Carslaw et al. (2006) where
it is used to triangulate sources in an airport setting, Carslaw and Beevers (2013) where
it is used with a clustering technique to identify features in a polar plot with similar
characteristics and Uria-Tellaetxe and Carslaw (2014) where it is extended to include a
conditional probability function to extract more information from the plots. The latter
paper is Open Access and can be downloaded from the openair website.

For many, maybe most situations, increasing wind speed generally results in lower
concentrations due to increased dilution through advection and increased mechan-
ical turbulence. There are, however, many processes that can lead to interesting
concentration-wind speed dependencies and we will provide a more theoretical treat-
ment of this in due course. However, below are a few reasons why concentrations can
change with increasing wind speeds.

• Buoyant plumes from tall stacks can be brought down to ground-level resulting
in high concentrations under high wind speed conditions.

60

8 The polarPlot and polarCluster functions

• Particle suspension increases with increasing wind speeds e.g. PM10 from spoil
heaps and the like.

• ‘Particle’ suspension can be important close to coastal areas where higher wind
speeds generate more sea spray.

• The wind speed dependence of concentrations in a street canyon can be very
complex: higher wind speeds do not always results in lower concentrations due to
re-circulation. Bivariate polar plots are very good at revealing these complexities.

• As Carslaw et al. (2006) showed, aircraft emissions have an unusual wind speed
dependence and this can help distinguish them from other sources. If several
measurement sites are available, polar plots can be used to triangulate different
sources.

• Concentrations of NO2 can increase with increasing wind speed — or at least not
decline steeply due to increased mixing. This mixing can result in O3-rich air
converting NO to NO2.

The function has been developed to allow variables other than wind speed to be
plotted with wind direction in polar coordinates. The key issue is that the other variable
plotted against wind direction should be discriminating in some way. For example,
temperature can help reveal high-level sources brought down to ground level in un-
stable atmospheric conditions, or show the effect a source emission dependent on
temperature e.g. biogenic isoprene. For research applications where many more vari-
ables could be available, discriminating sources by these other variables could be very
insightful.

Bivariate polar plots are constructed in the following way. First, wind speed, wind
direction and concentration data are partitioned into wind speed-direction bins and
the mean concentration calculated for each bin. Testing on a wide range of data sug-
gests that wind direction intervals at 10 degrees and 30 wind speed intervals capture
sufficient detail of the concentration distribution. The wind direction data typically
available are generally rounded to 10 degrees and for typical surface measurements
of wind speed in the range 0 to 20 to 30 m s−1, intervals greater than 30 would be
difficult to justify based on a consideration of the accuracy of the instruments. Binning
the data in this way is not strictly necessary but acts as an effective data reduction
technique without affecting the fidelity of the plot itself. Furthermore, because of the
inherent wind direction variability in the atmosphere, data from several weeks, months
or years typically used to construct a bivariate polar plot tends to be diffuse and does
not vary abruptly with either wind direction or speed and more finely resolved bin sizes
or working with the raw data directly does not yield more information.

The wind components, u and v are calculated i.e.

u = u.sin (2πθ) , v = u.cos (2πθ) (1)

with u is the mean hourly wind speed and θ is the mean wind direction in degrees
with 90 degrees as being from the east.

The calculations above provides a u, v, concentration (C) surface. While it would be
possible to work with this surface data directly a better approach is to apply a model to
the surface to describe the concentration as a function of the wind components u and
v to extract real source features rather than noise. A flexible framework for fitting a
surface is to use a Generalized Additive Model (GAM) e.g. (Hastie and Tibshirani 1990;
Wood 2006). GAMs are a useful modelling framework with respect to air pollution

61

8 The polarPlot and polarCluster functions

prediction because typically the relationships between variables are non-linear and
variable interactions are important, both of which issues can be addressed in a GAM
framework. GAMs can be expressed as shown in Equation 2:

√Ci = β0 +
n
∑
j=1

sj(xij) + ei (2)

whereCi is the ith pollutant concentration, β0 is the overall mean of the response,
sj(xij) is the smooth function of ith value of covariate j, n is the total number of co-
variates, and ei is the ith residual. Note that Ci is square-root transformed as the
transformation generally produces better model diagnostics e.g. normally distributed
residuals.

The model chosen for the estimate of the concentration surface is given by Equation 3.
In this model the square root-transformed concentration is a smooth function of the
bivariate wind components u and v. Note that the smooth function used is isotropic
because u and v are on the same scales. The isotropic smooth avoids the potential
difficulty of smoothing two variables on different scales e.g. wind speed and direction,
which introduces further complexities.

√Ci = s(u, v) + ei (3)

8.2 Options available

The polarPlot function has the following options:

mydata A data frame minimally containing wd, another variable to plot in polar
coordinates (the default is a column “ws” — wind speed) and a pollutant.
Should also contain date if plots by time period are required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". There can also be more
than one pollutant specified e.g. pollutant = c("nox", "no2"). The
main use of using two or more pollutants is for model evaluation where
two species would be expected to have similar concentrations. This saves
the user stacking the data and it is possible to work with columns of
data directly. A typical use would be pollutant = c("obs", "mod")

to compare two columns “obs” (the observations) and “mod” (modelled
values). When pair-wise statistics such as Pearson correlation and regres-
sion techniques are to be plotted, pollutant takes two elements too. For
example, pollutant = c("bc", "pm25")where "bc" is a function of
"pm25".

x Name of variable to plot against wind direction in polar coordinates, the
default is wind speed, “ws”.

wd Name of wind direction field.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles

62

8 The polarPlot and polarCluster functions

(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

statistic The statistic that should be applied to each wind speed/direction bin. Be-
cause of the smoothing involved, the colour scale for some of these statis-
tics is only to provide an indication of overall pattern and should not be in-
terpreted in concentration units e.g. forstatistic = "weighted.mean"

where the bin mean is multiplied by the bin frequency and divided by
the total frequency. In many cases using polarFreqwill be better. Set-
ting statistic = "weighted.mean" can be useful because it provides
an indication of the concentration * frequency of occurrence and will
highlight the wind speed/direction conditions that dominate the overall
mean.Can be:

• “mean” (default), “median”, “max” (maximum), “frequency”. “stdev”
(standard deviation), “weighted.mean”.

• statistic = "nwr" Implements the Non-parametric Wind Re-
gression approach of Henry et al. (2009) that uses kernel smoothers.
Theopenair implementation is not identical because Gaussian ker-
nels are used for both wind direction and speed. The smoothing is
controlled by ws_spread and wd_spread.

• statistic = "cpf" the conditional probability function (CPF) is
plotted and a single (usually high) percentile level is supplied. The
CPF is defined as CPF = my/ny, where my is the number of sam-
ples in the y bin (by default a wind direction, wind speed interval)
with mixing ratios greater than the overall percentile concentration,
and ny is the total number of samples in the same wind sector (see
Ashbaugh et al., 1985). Note that percentile intervals can also be
considered; see percentile for details.

• When statistic = "r", the Pearson correlation coefficient is cal-
culated for two pollutants. The calculation involves a weighted Pear-
son correlation coefficient, which is weighted by Gaussian kernels
for wind direction an the radial variable (by default wind speed).
More weight is assigned to values close to a wind speed-direction
interval. Kernel weighting is used to ensure that all data are used
rather than relying on the potentially small number of values in a
wind speed-direction interval.

• "robust.slope" is another option for pair-wise statisitics and"quantile.slope",
which uses quantile regression to estimate the slope for a particular
quantile level (see also tau for setting the quantile level).

resolution Two plot resolutions can be set: “normal” and “fine” (the default), for a
smoother plot. It should be noted that plots with a “fine” resolution can
take longer to render.

limits The function does its best to choose sensible limits automatically. How-
ever, there are circumstances when the user will wish to set different

63

8 The polarPlot and polarCluster functions

ones. An example would be a series of plots showing each year of data
separately. The limits are set in the form c(lower, upper), so limits
= c(0, 100)would force the plot limits to span 0-100.

exclude.missing Setting this option to TRUE (the default) removes points from the
plot that are too far from the original data. The smoothing routines will
produce predictions at points where no data exist i.e. they predict. By
removing the points too far from the original data produces a plot where
it is clear where the original data lie. If set to FALSEmissing data will be
interpolated.

uncertainty Should the uncertainty in the calculated surface be shown? If TRUE
three plots are produced on the same scale showing the predicted sur-
face together with the estimated lower and upper uncertainties at the
95 understand whether features are real or not. For example, at high
wind speeds where there are few data there is greater uncertainty over
the predicted values. The uncertainties are calculated using the GAM
and weighting is done by the frequency of measurements in each wind
speed-direction bin. Note that if uncertainties are calculated then the
type is set to ”default”.

percentile If statistic = "percentile" then percentile is used, expressed
from 0 to 100. Note that the percentile value is calculated in the wind
speed, wind direction ‘bins’. For this reason it can also be useful to set
min.bin to ensure there are a sufficient number of points available to
estimate a percentile. See quantile for more details of how percentiles
are calculated.
percentile is also used for the Conditional Probability Function (CPF)
plots. percentile can be of length two, in which case the percentile in-
terval is considered for use with CPF. For example,percentile = c(90,

100)will plot the CPF for concentrations between the 90 and 100th per-
centiles. Percentile intervals can be useful for identifying specific sources.
In addition, percentile can also be of length 3. The third value is the
‘trim’ value to be applied. When calculating percentile intervals many
can cover very low values where there is no useful information. The trim
value ensures that values greater than or equal to the trim * mean value
are considered before the percentile intervals are calculated. The effect is
to extract more detail from many source signatures. See the manual for
examples. Finally, if the trim value is less than zero the percentile range
is interpreted as absolute concentration values and subsetting is carried
out directly.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue"). cols

can also take the values "viridis", "magma", "inferno", or "plasma"
which are the viridis colour maps ported from Python’s Matplotlib library.

weights At the edges of the plot there may only be a few data points in each wind
speed-direction interval, which could in some situations distort the plot if
the concentrations are high. weights applies a weighting to reduce their

64

8 The polarPlot and polarCluster functions

influence. For example and by default if only a single data point exists
then the weighting factor is 0.25 and for two points 0.5. To not apply any
weighting and use the data as is, use weights = c(1, 1, 1).
An alternative to down-weighting these points they can be removed alto-
gether using min.bin.

min.bin The minimum number of points allowed in a wind speed/wind direction
bin. The default is 1. A value of two requires at least 2 valid records in
each bin an so on; bins with less than 2 valid records are set to NA. Care
should be taken when using a value > 1 because of the risk of removing
real data points. It is recommended to consider your data with care. Also,
the polarFreq function can be of use in such circumstances.

mis.col When min.bin is > 1 it can be useful to show where data are removed on
the plots. This is done by shading the missing data in mis.col. To not
highlight missing data whenmin.bin> 1 choosemis.col = "transparent".

alpha The alpha transparency to use for the plotting surface (a value between
0 and 1 with zero being fully transparent and 1 fully opaque). Setting a
value below 1 can be useful when plotting surfaces on a map using the
package openairmapss.

upper This sets the upper limit wind speed to be used. Often there are only
a relatively few data points at very high wind speeds and plotting all of
them can reduce the useful information in the plot.

angle.scale The wind speed scale is by default shown at a 315 degree angle. Some-
times the placement of the scale may interfere with an interesting feature.
The user can therefore set angle.scale to another value (between 0
and 360 degrees) to mitigate such problems. For example angle.scale
= 45will draw the scale heading in a NE direction.

units The units shown on the polar axis scale.

force.positive The default is TRUE. Sometimes if smoothing data with steep gradi-
ents it is possible for predicted values to be negative. force.positive
= TRUE ensures that predictions remain positive. This is useful for sev-
eral reasons. First, with lots of missing data more interpolation is needed
and this can result in artifacts because the predictions are too far from
the original data. Second, if it is known beforehand that the data are
all positive, then this option carries that assumption through to the pre-
diction. The only likely time where setting force.positive = FALSE

would be if background concentrations were first subtracted resulting in
data that is legitimately negative. For the vast majority of situations it is
expected that the user will not need to alter the default option.

k This is the smoothing parameter used by the gam function in package
mgcv. Typically, value of around 100 (the default) seems to be suitable
and will resolve important features in the plot. The most appropriate
choice of k is problem-dependent; but extensive testing of polar plots for
many different problems suggests a value of k of about 100 is suitable.
Setting k to higher values will not tend to affect the surface predictions
by much but will add to the computation time. Lower values of k will
increase smoothing. Sometimes with few data to plot polarPlot will
fail. Under these circumstances it can be worth lowering the value of k.

65

8 The polarPlot and polarCluster functions

normalise If TRUE concentrations are normalised by dividing by their mean value.
This is done after fitting the smooth surface. This option is particularly
useful if one is interested in the patterns of concentrations for several
pollutants on different scales e.g. NOx and CO. Often useful if more than
one pollutant is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the op-
tions key.header = "header", key.footer = "footer1" adds ad-
dition text above and below the scale key. These arguments are passed
to drawOpenKey via quickText, applying the auto.text argument, to
handle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

ws_spread The value of sigma used for Gaussian kernel weighting of wind speed
when statistic = "nwr" or when correlation and regression statistics
are used such as r. Default is 0.5.

wd_spread The value of sigma used for Gaussian kernel weighting of wind direction
when statistic = "nwr" or when correlation and regression statistics
are used such as r. Default is 4.

kernel Type of kernel used for the weighting procedure for when correlation or
regression techniques are used. Only "gaussian" is supported but this
may be enhanced in the future.

tau The quantile to be estimated whenstatistic is set to"quantile.slope".
Default is0.5which is equal to the median and will be ignored if"quantile.slope"
is not used.

... Other graphical parameters passed ontolattice:levelplotandcutData.
For example, polarPlotpasses the optionhemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common axis and title
labelling options (such as xlab, ylab, main) are passed to levelplot

via quickText to handle routine formatting.

8.3 Example of use

We first use the function in its simplest form to make a polar plot of NOx. The code is
very simple as shown in Figure 8.1.

This produces Figure 8.1. The scale is automatically set using whatever units the
original data are in. This plot clearly shows highest NOx concentrations when the wind
is from the south-west. Given that the monitor is on the south side of the street and the

66

8 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "nox")

0

5

10 ws

15

20

25

W

S

N

E

mean

NOx

50

100

150

200

250

FIGURE 8.1 Default use of the polarPlot function applied to Marylebone Road NOx concen-
trations.

highest concentrations are recorded when the wind is blowing away from the monitor
is strong evidence of street canyon recirculation.

Figure 8.2 and Figure 8.3 shows polar plots using different defaults and for other pol-
lutants. In the first (Figure 8.2, a different colour scheme is used and some adjustments
are made to the key. In Figure 8.3, SO2 concentrations are shown. What is interesting
about this plot compared with either Figure 8.2 or Figure 8.1 is that the concentration
pattern is very different i.e. high concentrations with high wind speeds from the east.
The most likely source of this SO2 are industrial sources to the east of London. The
plot does still however show evidence of a source to the south-west, similar to the plot
for NOx, which implies that road traffic sources of SO2 can also be detected.

These plots often show interesting features at higher wind speeds. For these con-
ditions there can be very few measurements and therefore greater uncertainty in the
calculation of the surface. There are several ways in which this issue can be tackled.
First, it is possible to avoid smoothing altogether and use polarFreq. The problem
with this approach is that it is difficult to know how best to bin wind speed and direction:
the choice of interval tends to be arbitrary. Second, the effect of setting a minimum
number of measurements in each wind speed-direction bin can be examined through
min.bin. It is possible that a single point at high wind speed conditions can strongly
affect the surface prediction. Therefore, setting min.bin = 3, for example, will re-
move all wind speed-direction bins with fewer than 3 measurements before fitting the
surface. This is a useful strategy for testing how sensitive the plotted surface is to the
number of measurements available. While this is a useful strategy to get a feel for
how the surface changes with different min.bin settings, it is still difficult to know
how many points should be used as a minimum. Third, consider setting uncertainty
= TRUE. This option will show the predicted surface together with upper and lower
95% confidence intervals, which take account of the frequency of measurements. The
uncertainty approach ought to be the most robust and removes any arbitrary setting of
other options. There is a close relationship between the amount of smoothing an the
uncertainty: more smoothing will tend to reveal less detail and lower uncertainties in
the fitted surface and vice-versa.

The default however is to down-weight the bins with few data points when fitting a

67

8 The polarPlot and polarCluster functions

NOx plot

polarPlot(mydata, pollutant = "nox", col = "jet", key.position = "bottom",

key.header = "mean nox (ug/m3)", key.footer = NULL)

0

5

10 ws

15

20

25

W

S

N

E

50 100 150 200 250

mean NOx (µg m−3)

FIGURE 8.2 Example plots using the polarPlot function with different options for the mean
concentration of NOx.

polarPlot(mydata, pollutant = "so2")

0

5

10 ws

15

20

25

W

S

N

E

mean

SO2

1

2

3

4

5

6

7

8

FIGURE 8.3 Example plots using the polarPlot function for the mean concentration of SO2.

surface. Weights of 0.25, 0.5 and 0.75 are used for bins containing 1, 2 and 3 data points
respectively. The advantage of this approach is that no data are actually removed
(which is what happens when using min.bin). This approach should be robust in a
very wide range of situations and is also similar to the approaches used when trying
to locate sources when using back trajectories as described in Section 19. Users can
ignore the automatic weighting by supplying the option weights = c(1, 1, 1).

polarFreq

provides an

un-smoothed

surface

A very useful approach for understanding air pollution is to consider ratios of pollu-
tants. One reason is that pollutant ratios can be largely independent of meteorological
variation. In many circumstances it is possible to gain a lot of insight into sources if
pollutant ratios are considered. First, it is necessary to calculate a ratio, which is easy

68

8 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "ratio", main = "so2/nox ratio")

SO2/NOx ratio

0

5

10 ws

15

20

25

W

S

N

E

mean

ratio

0.01

0.02

0.03

0.04

0.05

FIGURE 8.4 Bivariate polar plot of the ratio of SO2/NOx.

in R. In this example we consider the ratio of SO2/NOx:

mydata <- transform(mydata, ratio = so2 / nox)

Working with

ratios of

pollutants

This makes a new variable calledratio. Sometimes it can be problematic if there are
values equal to zero on the denominator, as is the case here. The mean and maximum
value of the ratio is infinite, as shown by the Inf in the statistics below. Luckily, R can
deal with infinity and the openair functions will remove these values before performing
calculations. It is very simple therefore to calculate ratios.

summary(mydata[, "ratio"])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.000 0.018 0.024 Inf 0.034 Inf 11782

A polar plot of the SO2/NOx ratio is shown in Figure 8.4. The plot highlights some
new features not seen before. First, to the north there seems to be evidence that the air
tends to have a higher SO2/NOx ratio. Also, the source to the east has a higher SO2/NOx
ratio compared with that when the wind is from the south-west i.e. dominated by
road sources. It seems therefore that the easterly source(s), which are believed to be
industrial sources have a different SO2/NOx ratio compared with road sources. This
is a very simple analysis, but ratios can be used effectively in many functions and are
particularly useful in the presence of high source complexity.

Sometimes when considering ratios it might be necessary to limit the values in some
way; perhaps due to some unusually low value denominator data resulting in a few
very high values for the ratio. This is easy to do with the subset command. The code
below selects ratios less than 0.1.

polarPlot(subset(mydata, ratio < 0.1), pollutant = "ratio")

The uncertainties in the surface can be calculated by setting the optionuncertainty
= TRUE. The details are described above and here we show the example of SO2 concen-
trations (Figure 8.5). In general the uncertainties are higher at high wind speeds i.e. at

69

8 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "so2", uncertainty = TRUE)

0

5

10 ws

15

20

25

W

S

N

E

lower uncertainty

0

5

10 ws

15

20

25

W

S

N

E

prediction

0

5

10 ws

15

20

25

W

S

N

E

upper uncertainty mean

SO2

2

4

6

8

10

FIGURE 8.5 Bivariate polar plot of SO2 concentrations at Marylebone Road. Three surfaces are
shown: the central prediction (middle) and the lower and upper 95% estimated uncertainties.
These plots help to show that in this particular case, some of the concentrations for strong
easterly and south-easterly winds are rather uncertain. However, the central feature to the
east remains, suggesting this feature is ‘real’ and not an artifact of there being too few data.

the ‘fringes’ of a plot where there are fewer data. However, the magnitude depends on
both the frequency and magnitude of the concentration close to the points of interest.
The pattern of uncertainty is not always obvious and it can differ markedly for different
pollutants.

The polarPlot function can also produce plots dependent on another variable (see
the type option). For example, the variation of SO2 concentrations at Marylebone
Road by hour of the day in the code below. The function was called as shown in in this
case the minimum number of points in each wind speed/direction was set to 2.

polarPlot(mydata, pollutant = "so2", type = "hour", min.bin = 2)

This plot shows that concentrations of SO2 tend to be highest from the east (as also
shown in Figure 8.3) and for hours in the morning. Together these plots can help better
understand different source types. For example, does a source only seem to be present
during weekdays, or winter months etc. In the case of type = "hour", the more
obvious presence during the morning hours could be due to meteorological factors
and this possibility should be investigated also. In other settings where there are many
sources that vary in their source emission and temporal characteristics, the polarPlot
function should prove to be very useful.

One issue to be aware of is the amount of data required to generate some of these
plots; particularly the hourly plots. If only a relatively short time series is available there
may not be sufficient information to produce useful plots. Whether this is important
or not will depend on the specific circumstances e.g. the prevalence of wind speeds
and directions from the direction of interest. When used to produce many plots (e.g.
type = ”hour”), the run time can be quite long.

70

8 The polarPlot and polarCluster functions

8.3.1 Nonparametric Wind Regression, NWR

An alternative approach to modelling the surface concentrations with a GAM is to
use kernel smoothers, as described by Henry et al. (2009). In NWR, smoothing is
achieved using nonparametric kernel smoothers that weight concentrations on a sur-
face according to their proximity to defined wind speed and direction intervals. In the
approach adopted in openair (which is not identical to Henry et al. (2009)), Gaussian
smoothers are used for both wind direction and wind speed. Unlike the default GAM
approach in openair, the NWR technique works directly with the raw (often hourly)
data. It tends to provide similar results to openair but may have advantages in certain
situations e.g. when there is insufficient data available to use a GAM. The width of the
Gaussian kernels (σ) is controlled by the options wd_spread and ws_spread.

An example for SO2 concentrations in shown in Figure 8.6, which can be compared
with Figure 8.3.

polarPlot(mydata, pollutant = "so2", statistic = "nwr")

0

5

10 ws

15

20

25

W

S

N

E

NWR

SO2

2

4

6

8

10

FIGURE 8.6 polarPlot of SO2 concentrations at Marylebone Road based on the NWR ap-
proach.

8.3.2 Conditional Probability Function (CPF) plot

The conditional probability functions (CPF) was described on page 52 in the context
of the percentileRose function. The CPF was originally used to show the wind
directions that dominate a (specified) high concentration of a pollutant; showing the
probability of such concentrations occurring by wind direction (Ashbaugh et al. 1985).
However, these ideas can very usefully be applied to bivariate polar plots. In this case
the CPF is defined as CPF = mθ,j/nθ,j, where mθ,j is the number of samples in the
wind sector θ and wind speed interval j with mixing ratios greater than some ‘high’
concentration, and nθ,j is the total number of samples in the same wind direction-
speed interval. Note that j does not have to be wind speed but could be any numeric
variable e.g. ambient temperature. CPF analysis is very useful for showing which wind
direction, wind speed intervals are dominated by high concentrations and give the
probability of doing so. A full explanation of the development and use of the bivariate
case of the CPF is described in Uria-Tellaetxe and Carslaw (2014) where it is applied to
monitoring data close to a steelworks.

An example of a CPF polar plot is shown in Figure 8.7 for the 90th percentile concen-
tration of SO2. This plot shows that for most wind speed-directions the probability of

71

8 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "so2", statistic = "cpf", percentile = 90)

CPF at the 90th percentile (=9.2)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

0.25

0.3

FIGURE 8.7 polarPlot of SO2 concentrations at Marylebone Road based on the CPF function.

SO2 concentrations being greater than the 90th percentile is zero. The clearest areas
where the probability is higher is to the east. Indeed, the plot now clearly reveals two
potential sources of SO2, which are not as apparent in the ‘standard’ plot shown in
Figure 8.3. Note that Figure 8.7 also gives the calculated percentile at the bottom of the
plot (9.2 ppb in this case). Figure 8.7 can also be compared with the CPF plot based only
on wind direction shown in Figure 6.4. While Figure 6.4 very clearly shows that easterly
wind dominate high concentrations of SO2, Figure 8.7 provides additional valuable
information by also considering wind speed, which in this case is able to discriminate
between two sources (or groups of sources) to the east.

The polar CPF plot is therefore potentially very useful for source identification and
characterisation. It is, for example, worth also considering other percentile levels and
other pollutants. For example, considering the 95th percentile for SO2 ‘removes’ one of
the sources (the one at highest wind speed). This helps to show some maybe important
differences between the sources that could easily have been missed. Similarly, con-
sidering other pollutants can help build up a good understanding of these sources. A
CPF plot for NO2 at the 90th percentile shows the single dominance of the road source.
However, a CPF plot at the 75th percentile level indicates source contributions from
the east (likely tall stacks), which again are not as clear in the standard bivariate polar
plot. Considering a range of percentile values can therefore help to build up a more
complete understanding of source contributions.

However, even more useful information can be gained by considering intervals of
percentiles e.g. 50–60, 60–70 etc. By considering intervals of percentiles it becomes
clear that some sources only affect a limited percentile range. polarPlot can accept
a percentile argument of length two e.g. percentile = c(80, 90). In this case
concentrations in the range from the lower to upper percentiles will be considered.
In Figure 8.8 for example, it is apparent that the road source to the south west is only
important between the 60 to 90th percentiles. As mentioned previously, the chim-
ney stacks to the east are important for the higher percentiles (90 to 100). What is
interesting though is the emergence of what appears to be other sources at the lower
percentile intervals. These potential sources are not apparent in Figure 8.3. The other
interesting aspect is that it does seem that specific sources tend to be prominent for
specific percentile ranges. If this characteristic is shown to be the case more generally,

72

8 The polarPlot and polarCluster functions

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(0, 10))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(10, 20))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(20, 30))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(30, 40))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(40, 50))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(50, 60))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(60, 70))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(70, 80))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(80, 90))

polarPlot(mydata, poll = "so2", stati = "cpf", percentile = c(90, 100))

CPF (0 to 1)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.1

0.2

0.3

0.4

0.5

0.6

CPF (1 to 1.9)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CPF (1.9 to 2.5)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

CPF (2.5 to 3.2)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

0.25

CPF (3.2 to 4)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CPF (4 to 4.9)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.02

0.04

0.06

0.08

0.1

0.12

CPF (4.9 to 5.9)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CPF (5.9 to 7.2)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CPF (7.2 to 9.2)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

CPF (9.2 to 63)

0

5

10 ws

15

20

25

W

S

N

E

CPF
probability

SO2

0.05

0.1

0.15

0.2

0.25

0.3

FIGURE 8.8 polarPlot of SO2 concentrations at Marylebone Road based on the CPF function
for a range of percentile intervals from 0–10, 10–20, …, 90-100.

then CPF intervals could be a powerful way in which to identify many sources. Whether
these particular sources are important or not is questionable and depends on the aims
of the analysis. However, there is no reason to believe that the potential sources shown
in the percentile ranges 0 to 50 are artifacts. They could for example be signals from
more distant point sources whose plumes have diluted more over longer distances.
Such sources would be ‘washed out’ in an ordinary polar plot. For a fuller example of
this approach see Uria-Tellaetxe and Carslaw (2014).

Note that it is easy to work out what the concentration intervals are for the percentiles
shown in Figure 8.8:

quantile(mydata$so2, probs = seq(0, 1, by = 0.1), na.rm = TRUE)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.0 1.0 1.9 2.5 3.2 4.0 4.9 5.9 7.2 9.2 63.2

To plot the Figures on one page it is necessary to make the plot objects first and then
decide how to plot them. To plot the Figures in a particular layout see page 14.

73

8 The polarPlot and polarCluster functions

8.3.3 Pairwise statistics

Grange et al. (2016) further developed the capabilities of the polarPlot function by
allowing pairwise statistics to be used. This method makes it possible to consider
the relationship between two pollutants to be considered. The relationship between
two pollutants often yields useful source apportionment information and when com-
bined with the polarPlot function can provide enhanced information. The pairwise
statistics that can be considered include’:

• The Pearson correlation coefficient, r;

• The robust slope (gradient) resulting from a linear regressions between two
pollutants.

• The quantile slope from a quantile regression applied to two variables with a
quantile value of tau. By default the median slope (i.e. tau = 0.5) is used by the
actual level can be set by the user.

The calculation involves a weighted Pearson correlation coefficient, which is weighted
by Gaussian kernels for wind direction an the radial variable (by default wind speed).
More weight is assigned to values close to a wind speed-direction interval. Kernel
weighting is used to ensure that all data are used rather than relying on the potentially
small number of values in a wind speed-direction interval.

The calculation involves a weighted statistics by Gaussian kernels for wind direction
and the radial variable (by default wind speed). More weight is assigned to values
close to a wind speed-direction interval. Kernel weighting is used to ensure that all
data are used rather than relying on the potentially small number of values in a wind
speed-direction interval.

An example usage scenario is that measurements of metal concentrations are made
close to a steel works where there is interest in understanding the principal sources.
While it is useful to consider the correlation between potentially many metal concen-
trations, the contention is that if the correlation is also considered as a function of wind
speed and direction, improved information will be available of the types of sources
contributing. For example, it may be that Fe and Mn are quite strongly correlated
overall, but they tend to be most correlated under specific wind speed and direction
ranges — suggesting a specific source origin.

As an example of usage we will consider the relationship between PM2.5 and PM10 at
the rural Harwell site in Oxfordshire. Additionally, we will use meteorological data
from a nearby site rather than rely on modelled values that are provided inimportAURN.

library(worldmet) # to access met data

library(tidyverse)

har <- importAURN("har", year = 2013)

import met data from nearby site (Benson)

met <- importNOAA(code = "036580-99999", year = 2013)

merge AQ and met but don't use modelled ws and wd

har <- inner_join(

select(har, -ws, -wd),

met,

by = "date"

)

An example pairwise regression surface relationship relating PM2.5 and PM10 is
shown in Figure 8.9. This plot reveals that that almost all the PM10 is in the form

74

8 The polarPlot and polarCluster functions

polarPlot(har, poll = c("pm2.5", "pm10"),

statistic = "robust_slope",

col = "jet",

limits = c(0, 1),

ws_spread = 1.5,

wd_spread = 10)

5

10

15 ws

20

W

S

N

E

Formula:

PM2.5 ~ PM10

robust

slope

PM2.5

PM10

0

0.2

0.4

0.6

0.8

> 1

FIGURE 8.9 Use of the polarPlot function to investigate the linear regression slope between
PM2.5 and PM10 at Harwell in 2013. In this case the robust slope is calculated.

of PM2.5 when the wind has an easterly component, which is attributed to the large
secondary contribution likely dominated by ammonium nitrate.

A simple scatter plot between PM2.5 and PM10 strongly suggests a 1:1 relationship
and it is not obvious that there is a higher PM2.5/PM10 ratio when the wind is from the
east.

8.3.4 The polarCluster function for feature identification and extraction

The polarPlot function will often identify interesting features that would be useful to
analyse further. It is possible to select areas of interest based only on a consideration
of a plot. Such a selection could be based on wind direction and wind speed intervals
for example e.g.

subdata <- subset(mydata, ws >3 & wd >= 180 & wd <=270)

which would select wind speeds >3 m s−1 and wind directions from 180 to 270
degrees from mydata. That subset of data, subdata, could then be analysed using
other functions. While this approach may be useful in many circumstances it is rather
arbitrary. In fact, the choice of ‘interesting feature’ in the first place can even depend
on the colour scale used, which is not very robust. Furthermore, many interesting
patterns can be difficult to select and won’t always fall into convenient intervals of
other variables such as wind speed and direction.

A better approach is to use a method that can select group similar features together.
One such approach is to use cluster analysis. openair uses k-means clustering as a way in
which bivariate polar plot features can be identified and grouped. The main purpose of
grouping data in this way is to identify records in the original time series data by cluster

75

8 The polarPlot and polarCluster functions

to enable post-processing to better understand potential source characteristics. The
process of grouping data in k-means clustering proceeds as follows. First, k points are
randomly chosen form the space represented by the objects that are being clustered
into k groups. These points represent initial group centroids. Each object is assigned
to the group that has the closest centroid. When all objects have been assigned, the
positions of the k centroids is re-calculated. The previous two steps are repeated until
the centroids no longer move. This produces a separation of the objects into groups
from which the metric to be minimised can be calculated.

Central to the idea of clustering data is the concept of distance i.e. some measure
of similarity or dissimilarity between points. Clusters should be comprised of points
separated by small distances relative to the distance between the clusters. Careful con-
sideration is required to define the distance measure used because the effectiveness of
clustering itself fundamentally depends on its choice. The similarity of concentrations
shown in Figure 8.1 for example is determined by three variables: the u and v wind
components and the concentration. All three variables are equally important in char-
acterising the concentration-location information, but they exist on different scales
i.e. a wind speed-direction measure and a concentration. LetX = {xi}, i = 1, … , n be a
set of n points to be clustered intoK clusters,C = {ck, k = 1, … , K}. The basic k-means
algorithm forK clusters is obtained by minimising:

K
∑
k=1

∑
xi∈ck

||xi − μk||2 (4)

where ||xi − μk||2 is a chosen distance measure, μk is the mean of cluster ck.
The distance measure is defined as the Euclidean distance:

dx,y = (
J
∑
j=1
(xj − yj)2)

1/2

(5)

Where x and y are two J-dimensional vectors, which have been standardized by
subtracting the mean and dividing by the standard deviation. In the current case J is of
length three i.e. the wind components u and v and the concentrationC, each of which
is standardized e.g.:

xj = (
xj − x
σx

) (6)

Standardization is necessary because the wind components u and v are on different
scales to the concentration. In principle, more weight could be given to the concentra-
tion rather than the u and v components, although this would tend to identify clusters
with similar concentrations but different source origins.
polarCluster can be thought of as the ‘local’ version of clustering of back trajecto-

ries. Rather than using air mass origins, wind speed, wind direction and concentration
are used to group similar conditions together. Section 19.3 provides the details of clus-
tering back trajectories in openair. A fuller description of the clustering approach is
described in Carslaw and Beevers (2013).

The polarCluster function has the following options.

mydata A data frame minimally containing wd, another variable to plot in polar
coordinates (the default is a column “ws” — wind speed) and a pollutant.
Should also contain date if plots by time period are required.

76

8 The polarPlot and polarCluster functions

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". Only one pollutant can be
chosen.

x Name of variable to plot against wind direction in polar coordinates, the
default is wind speed, “ws”.

wd Name of wind direction field.

n.clusters Number of clusters to use. If n.clusters is more than length 1, then
a lattice panel plot will be output showing the clusters identified for
each one of n.clusters.

cols Colours to be used for plotting. Useful options for categorical data are
avilable from RColorBrewer colours — see the openair openColours
function for more details. Useful schemes include “Accent”, “Dark2”,
“Paired”, “Pastel1”, “Pastel2”, “Set1”, “Set2”, “Set3” — but see ?brewer.pal
for the maximum useful colours in each. For user defined the user can
supply a list of colour names recognised by R (type colours() to see
the full list). An example would be cols = c("yellow", "green",

"blue").

angle.scale The wind speed scale is by default shown at a 315 degree angle. Some-
times the placement of the scale may interfere with an interesting feature.
The user can therefore set angle.scale to another value (between 0
and 360 degrees) to mitigate such problems. For example angle.scale
= 45will draw the scale heading in a NE direction.

units The units shown on the polar axis scale.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters passed ontopolarPlot,lattice:levelplot
and cutData. Common axis and title labelling options (such as xlab,
ylab, main) are passed via quickText to handle routine formatting.

The use of thepolarCluster is very similar to the use of all openair functions. While
there are many techniques available to try and find the optimum number of clusters,
it is difficult for these approaches to work in a consistent way for identifying features
in bivariate polar plots. For this reason it is best to consider a range of solutions that
covers a number of clusters.

Cluster analysis is computationally intensive and the polarCluster function can
take a comparatively long time to run. The basic idea is to calculate the solution to
several cluster levels and then choose one that offers the most appropriate solution for
post-processing.

The example given below is for concentrations of SO2, shown in Figure 8.3 and the
aim is to identify features in that plot. A range of numbers of clusters will be calculated
— in this case from two to ten.

The real benefit of polarCluster is being able to identify clusters in the original
data frame. To do this, the results from the analysis must be read into a new variable, as
in Figure 8.11, where the results are read into a data frame results. Now it is possible
to use this new information. In the 8-cluster solution to Figure 8.11, cluster 6 seems to

77

8 The polarPlot and polarCluster functions

polarCluster(mydata, pollutant="so2", n.clusters=2:10, cols= "Set2")

0

5

10 ws

15

20

25

W

S

N

E

2 clusters

0

5

10 ws

15

20

25

W

S

N

E

3 clusters

0

5

10 ws

15

20

25

W

S

N

E

4 clusters

0

5

10 ws

15

20

25

W

S

N

E

5 clusters

0

5

10 ws

15

20

25

W

S

N

E

6 clusters

0

5

10 ws

15

20

25

W

S

N

E

7 clusters

0

5

10 ws

15

20

25

W

S

N

E

8 clusters

0

5

10 ws

15

20

25

W

S

N

E

9 clusters

0

5

10 ws

15

20

25

W

S

N

E

10 clusters

cluster
1
2
3
4
5
6
7
8
9
10

FIGURE 8.10 Use of the polarCluster function applied to SO2 concentrations at Marylebone
Road. In this case 2 to 10 clusters have been chosen.

capture the elevated SO2 concentrations to the east well (see Figure 8.3 for comparison),
while cluster 5 will strongly represent the road contribution.

The results are here:

78

8 The polarPlot and polarCluster functions

results <- polarCluster(mydata, pollutant="so2", n.clusters=8, cols= "Set2")

0

5

10 ws

15

20

25

W

S

N

E

cluster
1
2
3
4
5
6
7
8

FIGURE 8.11 Use of the polarCluster function applied to SO2 concentrations at Marylebone
Road. In this case 8 clusters have been chosen.

head(results[["data"]])

.id date ws wd nox no2 o3 pm10 so2 co pm25 ws2 wd2

1 1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.7 3.37 NA 4.0 259

2 10 1998-01-01 09:00:00 4.0 170 113 39 2 12 2.9 1.21 NA 5.6 209

3 100 1998-01-05 03:00:00 8.8 240 53 24 16 12 1.6 0.54 NA 11.9 386

4 1000 1998-02-11 15:00:00 7.2 230 372 92 2 49 8.6 3.72 NA 7.4 236

5 10000 1999-02-21 15:00:00 6.4 290 71 32 20 10 2.6 1.05 8 7.1 334

6 10001 1999-02-21 16:00:00 7.7 290 85 39 16 12 2.9 1.48 9 9.6 305

ratio cluster

1 0.017 4

2 0.026 5

3 0.030 4

4 0.023 4

5 0.037 7

6 0.034 7

Note that there is an additional column cluster that gives the cluster a particular
row belongs to and that this is a character variable. It might be easier to read these
results into a new data frame:

results <- results[["data"]]

It is easy to find out how many points are in each cluster:

table(results[, "cluster"])

##

1 2 3 4 5 6 7 8

206 412 160 24133 16049 2590 7839 2918

Now other openair analysis functions can be used to analyse the results. For example,
to consider the temporal variations by cluster:

79

9 The polarAnnulus function

timeProp(selectByDate(results, year = 2003), pollutant = "so2", avg.time = "day",

proportion= "cluster", col = "Set2", key.position = "top",

key.columns = 8, date.breaks = 10, ylab = "so2 (ug/m3)")

contribution weighted by mean
date

S
O

2
(µ

g
m

−3
)

5

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

cluster
8 7 6 5 4 3 2 1

FIGURE 8.12 Temporal variation in daily SO2 concentration at the Marylebone Road site show
by contribution of each cluster for 2003.

timeVariation(results, pollutant="so2", group = "cluster",

col = "Set2", ci = FALSE, lwd = 3)

Or if we just want to plot a couple of clusters (5 and 6) using the same colours as in
Figure 8.11:

timeVariation(subset(results, cluster %in% c("C5", "C6")), pollutant="so2",

group = "cluster", col = openColours("Set2", 8)[5:6], lwd = 3)

polarClusterwill work on any surface that can be plotted by polarPlot e.g. the
radial variable does not have to be wind speed but could be another variable such as
temperature. While it is not always possible for polarCluster to identify all features
in a surface it certainly makes it easier to post-process polarPlots using other openair
functions or indeed other analyses altogether.

Another useful way of understanding the clusters is to use the timeProp function,
which can display a time series as a bar chart split by a categorical variable (in this case
the cluster). In this case it is useful to plot the time series of SO2 and show how much of
the concentration is contributed to by each cluster. Such a plot is shown in Figure 8.12. It
is now easy to see for example that many of the peaks in SO2 are associated with cluster
6 (power station sources from the east), seen in Figure 8.11. Cluster 6 is particularly
prominent during springtime, but those sources also make important contributions
through the whole year.

9 The polarAnnulus function

9.1 Purpose

see also

polarFreq

polarPlot

percentileRose

pollutionRose

The polarAnnulus function provides a way in which to consider the temporal aspects
of a pollutant concentration by wind direction. This is another means of visualising
diurnal, day of week, seasonal and trend variations. Plotting as an annulus, rather than
a circle avoids to some extent the difficulty in interpreting values close to the origin.
These plots have the capacity to display potentially important information regarding
sources; particularly if more than one pollutant is available.

80

9 The polarAnnulus function

9.2 Options available

The polarAnnulus function has the following options:

mydata A data frame minimally containing date, wd and a pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". There can also be more
than one pollutant specified e.g. pollutant = c("nox", "no2"). The
main use of using two or more pollutants is for model evaluation where
two species would be expected to have similar concentrations. This saves
the user stacking the data and it is possible to work with columns of
data directly. A typical use would be pollutant = c("obs", "mod")

to compare two columns “obs” (the observations) and “mod” (modelled
values).

resolution Two plot resolutions can be set: “normal” and “fine” (the default).

local.tz Should the results be calculated in local time that includes a treatment of
daylight savings time (DST)? The default is not to consider DST issues,
provided the data were imported without a DST offset. Emissions activity
tends to occur at local time e.g. rush hour is at 8 am every day. When the
clocks go forward in spring, the emissions are effectively released into the
atmosphere typically 1 hour earlier during the summertime i.e. when DST
applies. When plotting diurnal profiles, this has the effect of “smearing-
out” the concentrations. Sometimes, a useful approach is to express time
as local time. This correction tends to produce better-defined diurnal pro-
files of concentration (or other variables) and allows a better comparison
to be made with emissions/activity data. If set toFALSE then GMT is used.
Examples of usage include local.tz = "Europe/London", local.tz
= "America/New_York". See cutData and import for more details.

period This determines the temporal period to consider. Options are “hour” (the
default, to plot diurnal variations), “season” to plot variation throughout
the year, “weekday” to plot day of the week variation and “trend” to plot
the trend by wind direction.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "site")will pro-
duce a 2x2 plot split by season and site. The use of two types is mostly
meant for situations where there are several sites. Note, when two types
are provided the first forms the columns and the second the rows.

81

9 The polarAnnulus function

Also note that for the polarAnnulus function some type/period combi-
nations are forbidden or make little sense. For example,type = "season"

and period = "trend" (which would result in a plot with too many
gaps in it for sensible smoothing), or type = "weekday" and period =

"weekday".

statistic The statistic that should be applied to each wind speed/direction bin.
Can be “mean” (default), “median”, “max” (maximum), “frequency”.
“stdev” (standard deviation), “weighted.mean” or “cpf” (Conditional
Probability Function). Because of the smoothing involved, the colour
scale for some of these statistics is only to provide an indication of over-
all pattern and should not be interpreted in concentration units e.g. for
statistic = "weighted.mean"where the bin mean is multiplied by
the bin frequency and divided by the total frequency. In many cases us-
ing polarFreqwill be better. Setting statistic = "weighted.mean"

can be useful because it provides an indication of the concentration *
frequency of occurrence and will highlight the wind speed/direction
conditions that dominate the overall mean.

percentile Ifstatistic = "percentile"orstatistic = "cpf" thenpercentile
is used, expressed from 0 to 100. Note that the percentile value is cal-
culated in the wind speed, wind direction ‘bins’. For this reason it can
also be useful to set min.bin to ensure there are a sufficient number of
points available to estimate a percentile. See quantile for more details
of how percentiles are calculated.

limits Limits for colour scale.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” and user defined. For user defined the user can supply a list
of colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

width The width of the annulus; can be “normal” (the default), “thin” or “fat”.

min.bin The minimum number of points allowed in a wind speed/wind direction
bin. The default is 1. A value of two requires at least 2 valid records in
each bin an so on; bins with less than 2 valid records are set to NA. Care
should be taken when using a value > 1 because of the risk of removing
real data points. It is recommended to consider your data with care. Also,
the polarFreq function can be of use in such circumstances.

exclude.missing Setting this option to TRUE (the default) removes points from the
plot that are too far from the original data. The smoothing routines will
produce predictions at points where no data exist i.e. they predict. By
removing the points too far from the original data produces a plot where
it is clear where the original data lie. If set to FALSEmissing data will be
interpolated.

date.pad For type = "trend" (default), date.pad = TRUEwill pad-out missing
data to the beginning of the first year and the end of the last year. The
purpose is to ensure that the trend plot begins and ends at the beginning
or end of year.

82

9 The polarAnnulus function

force.positive The default is TRUE. Sometimes if smoothing data with steep gradi-
ents it is possible for predicted values to be negative. force.positive
= TRUE ensures that predictions remain postive. This is useful for several
reasons. First, with lots of missing data more interpolation is needed and
this can result in artifacts because the predictions are too far from the
original data. Second, if it is known beforehand that the data are all pos-
tive, then this option carries that assumption through to the prediction.
The only likely time where setting force.positive = FALSEwould be
if background concentrations were first subtracted resulting in data that
is legitimately negative. For the vast majority of situations it is expected
that the user will not need to alter the default option.

k The smoothing value supplied to gam for the temporal and wind direction
components, respectively. In some cases e.g. a trend plot with less than
1-year of data the smoothing with the default values may become too
noisy and affected more by outliers. Choosing a lower value of k (say 10)
may help produce a better plot.

normalise If TRUE concentrations are normalised by dividing by their mean value.
This is done after fitting the smooth surface. This option is particularly
useful if one is interested in the patterns of concentrations for several
pollutants on different scales e.g. NOx and CO. Often useful if more than
one pollutant is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the op-
tions key.header = "header", key.footer = "footer1" adds ad-
dition text above and below the scale key. These arguments are passed
to drawOpenKey via quickText, applying the auto.text argument, to
handle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters passed ontolattice:levelplotandcutData.
For example,polarAnnuluspasses the optionhemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common axis and title
labelling options (such as xlab, ylab, main) are passed to levelplot

via quickText to handle routine formatting.

9.3 Example of use

We apply the four variations of the polarAnnulus plot to PM10 concentrations at
Marylebone Road. Figure 9.1 shows the different temporal components. Similar to
other analyses for PM10, the trend plot show that concentrations are dominated by

83

9 The polarAnnulus function

southerly winds and there is little overall change in concentrations from 1998 to 2005,
as shown by the red colouring over the period. The seasonal plot shows that Febru-
ary/March is important for easterly winds, while the summer/late summer period is
more important for southerly and south-westerly winds. The day of the week plot
clearly shows concentrations to be elevated for during weekdays but not weekends —
for all wind directions. Finally, the diurnal plot highlights that higher concentrations
are observed from 6 am to 6 pm.

Interestingly, the plot for NOx and CO (not shown, but easily produced) did not
show such a strong contribution for south-easterly winds. This raises the question
as to whether the higher particle concentrations seen for these wind directions are
dominated by different sources (i.e. not the road itself). One explanation is that during
easterly flow, concentrations are strongly affected by long-range transport. However,
as shown in the diurnal plot in Figure 9.1, the contribution from the south-east also
has a sharply defined profile — showing very low concentrations at night, similar to the
likely contribution from the road. This type of profile might not be expected from a
long-range source where emissions are well-mixed and secondary particle formation
has had time to occur. The same is also true for the day of the week plot, where there
is little evidence of ‘smeared-out’ long-range transport sources. These findings may
suggest a different, local source of PM10 that is not the road itself. Clearly, a more
detailed analysis would be required to confirm the patterns shown; but it does highlight
the benefit of being able to analyse data in different ways.

Where there is interest in considering the wind direction dependence of concentra-
tions, it can be worth filtering for wind speeds. At low wind speed with wind direction
becomes highly variable (and is often associated with high pollutant concentrations).
Therefore, for some situations it might be worth considering removing the very low
wind speeds. The code below provides two ways of doing this using the subset func-
tion. The first selects data where the wind speed is> 2 m s−1. The second part shows
how to select wind speeds greater than the 10th percentile, using the quantile func-
tion. The latter way of selecting is quite useful, because it is known how much data are
selected i.e. in this case 90 %. It is worth experimenting with different values because
it is also important not to lose information by ignoring wind speeds that provide useful
information.

wind speed >2

polarAnnulus(subset(mydata, ws > 2), poll="pm10", type = "hour")

wind speed > 10th percentile

polarAnnulus(subset(mydata, ws > quantile(ws, probs = 0.1, na.rm = TRUE)),

poll="pm10", type = "hour")

84

10 The timePlot function

data(mydata)

polarAnnulus(mydata, poll = "pm10", period = "trend", main = "Trend")

polarAnnulus(mydata, poll = "pm10", period = "season", main = "Season")

polarAnnulus(mydata, poll = "pm10", period = "weekday", main = "Weekday")

polarAnnulus(mydata, poll = "pm10",period = "hour", main = "Hour")

Trend

01−Jan−1998

23−Jun−2005

01−Jan−1998

23−Jun−2005

W

S

N

E

mean

PM10

20

25

30

35

40

45

50

Season

January

December

January

December

W

S

N

E

mean

PM10

20

25

30

35

40

45

50

Weekday

Sunday

Saturday

Sunday

Saturday

W

S

N

E

mean

PM10

20

25

30

35

40

45

50

55

60

Hour

0

23

0

23

W

S

N

E

mean

PM10

20

25

30

35

40

45

50

55

FIGURE 9.1 Examples of the polarAnnulus function applied to Marylebone Road

10 The timePlot function

10.1 Purpose

see also

smoothTrend

TheilSen

timeVariation

scatterPlot

The timePlot function is designed to quickly plot time series of data, perhaps for
several pollutants or variables. This is, or should be, a very common task in the analysis
of air pollution. In doing so, it is helpful to be able to plot several pollutants at the same
time (and maybe other variables) and quickly choose the time periods of interest. It
will plot time series of type Date and hourly and high time resolution data.

The function offers fine control over many of the plot settings such as line type,
colour and width. If more than one pollutant is selected, then the time series are shown
in a compact way in different panels with different scales. Sometimes it is useful to get
and idea of whether different variables ‘go up and down’ together. Such comparisons
in timePlot are made easy by setting group = TRUE, and maybe also normalise

= "mean". The latter setting divides each variable by its mean value, thus enabling
several variables to be plotted together using the same scale. The normalise option
will also take a date as a string (in British format dd/mm/YYYY), in which case all data
are normalise to equal 100 at that time. Normalising data like this makes it easy to

85

10 The timePlot function

compare time series on different scales e.g. emissions and ambient measurements.
timePlotworks very well in conjunction with selectByDate, which makes it easy

to select specific time series intervals. See (§24.1) for examples of how to select parts
of a data frame based on the date.

Another useful feature of timePlot is the ability to average the data in several ways.
This makes it easy, for example, to plot daily or monthly means from hourly data, or
hourly means from 15-minute data. See the option avg.time for more details and
(§24.4) where a full description of time averaging of data frames is given.

10.2 Options available

mydata A data frame of time series. Must include a date field and at least one
variable to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted, in which
case a form like pollutant = c("nox", "co") should be used.

group If more than one pollutant is chosen, should they all be plotted on the
same graph together? The default isFALSE, which means they are plotted
in separate panels with their own scaled. If TRUE then they are plotted on
the same plot with the same scale.

stack If TRUE the time series will be stacked by year. This option can be useful
if there are several years worth of data making it difficult to see much
detail when plotted on a single plot.

normalise Should variables be normalised? The default is is not to normalise the
data. normalise can take two values, either “mean” or a string represent-
ing a date in UK format e.g. ”1/1/1998” (in the format dd/mm/YYYY). If
normalise = "mean" then each time series is divided by its mean value.
If a date is chosen, then values at that date are set to 100 and the rest
of the data scaled accordingly. Choosing a date (say at the beginning of
a time series) is very useful for showing how trends diverge over time.
Setting group = TRUE is often useful too to show all time series together
in one panel.

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”,
“day”, “DSTday”, “week”, “month”, “quarter” or “year”. For much in-
creased flexibility a number can precede these options followed by a
space. For example, a timeAverage of 2 months would be period = "2

month". See function timeAverage for further details on this.

data.thresh The data capture threshold to use (%) when aggregating the data using
avg.time. A value of zero means that all available data will be used
in a particular period regardless if of the number of values available.
Conversely, a value of 100 will mean that all data will need to be present
for the average to be calculated, else it is recorded as NA. Not used if
avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean.
Can be one of “mean”, “max”, “min”, “median”, “frequency”, “sd”,
“percentile”. Note that “sd” is the standard deviation and “frequency”
is the number (frequency) of valid records in the period. “percentile”
is the percentile level (%) between 0-100, which can be set using the
“percentile” option - see below. Not used if avg.time = "default".

86

10 The timePlot function

percentile The percentile level in % used when statistic = "percentile" and
when aggregating the data with avg.time. More than one percentile
level is allowed fortype = "default" e.g. percentile = c(50, 95).
Not used if avg.time = "default".

date.pad Should missing data be padded-out? This is useful where a data frame
consists of two or more ”chunks” of data with time gaps between them. By
setting date.pad = TRUE the time gaps between the chunks are shown
properly, rather than with a line connecting each chunk. For irregu-
lar data, set to FALSE. Note, this should not be set for type other than
default.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Only one type is currently allowed in timePlot.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

plot.type The lattice plot type, which is a line (plot.type = "l") by default.
Another useful option is plot.type = "h", which draws vertical lines.

key Should a key be drawn? The default is TRUE.

log Should the y-axis appear on a log scale? The default is FALSE. If TRUE a
well-formatted log10 scale is used. This can be useful for plotting data
for several different pollutants that exist on very different scales. It is
therefore useful to use log = TRUE together with group = TRUE.

windflow This option allows a scatter plot to show the wind speed/direction as an
arrow. The option is a list e.g. windflow = list(col = "grey", lwd

= 2, scale = 0.1). This option requires wind speed (ws) and wind
direction (wd) to be available.
The maximum length of the arrow plotted is a fraction of the plot dimen-
sion with the longest arrow being scale of the plot x-y dimension. Note,
if the plot size is adjusted manually by the user it should be re-plotted
to ensure the correct wind angle. The list may contain other options to
panel.arrows in the lattice package. Other useful options include
length, which controls the length of the arrow head and angle, which
controls the angle of the arrow head.

87

10 The timePlot function

This option works best where there are not too many data to ensure over-
plotting does not become a problem.

smooth Should a smooth line be applied to the data? The default is FALSE.

ci If a smooth fit line is applied, then ci determines whether the 95% confi-
dence intervals are shown.

y.relation This determines how the y-axis scale is plotted. ”same” ensures all panels
use the same scale and ”free” will use panel-specific scales. The latter is
a useful setting when plotting data with very different values.

ref.x See ref.y for details. In this case the correct date format should be
used for a vertical line e.g. ref.x = list(v = as.POSIXct("2000-

06-15"), lty = 5).

ref.y A list with details of the horizontal lines to be added representing refer-
ence line(s). For example, ref.y = list(h = 50, lty = 5)will add
a dashed horizontal line at 50. Several lines can be plotted e.g. ref.y =

list(h = c(50, 100), lty = c(1, 5), col = c("green", "blue")).
Seepanel.abline in thelatticepackage for more details on adding/con-
trolling lines.

key.columns Number of columns to be used in the key. With many pollutants a single
column can make to key too wide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Can include “top”, “bot-
tom”, “right” and “left”.

name.pol This option can be used to give alternative names for the variables plotted.
Instead of taking the column headings as names, the user can supply
replacements. For example, if a column had the name “nox” and the user
wanted a different description, then setting name.pol = "nox before

change" can be used. If more than one pollutant is plotted then use c
e.g. name.pol = c("nox here", "o3 there").

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time
appropriately to the range being considered. This does not always work
as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot

generally sets the date format sensibly there can be some situations where
the user wishes to have more control. For format types see strptime.
For example, to format the date like “Jan-2012” setdate.format = "%b-

%Y".

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters are passed ontocutDataandlattice:xyplot.
For example, timePlot passes the option hemisphere = "southern"

88

10 The timePlot function

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, most common plotting
parameters, such as layout for panel arrangement and pch and cex for
plot symbol type and size and lty and lwd for line type and width, as
passed to xyplot, although some maybe locally managed by openair
on route, e.g. axis and title labelling options (such as xlab, ylab, main)
are passed via quickText to handle routine formatting. See examples
below.

10.3 Example of use

A full set of examples is shown in the help pages — see ?timePlot for details. At the
basic level, concentrations are shown using a simple call e.g. to plot time series of NOx
and O3 in separate panels with their own scales.

timePlot(mydata, pollutant = c("nox", "o3"), y.relation = "free")

Often it is necessary to only consider part of a time series and using the openair

function selectByDatemakes it easy to do this. Some examples are shown below.
To plot data only for 2003:

timePlot(selectByDate(mydata, year = 2003), pollutant = c("nox", "o3"), y.relation = "free")

Plots for several pollutants for August 2003, are shown in Figure 10.1.
Some other examples (not plotted) are:

plot monthly means of ozone and no2

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month",

y.relation = "free")

plor 95th percentile monthly concentrations

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month",

statistic = "percentile", percentile = 95,

y.relation = "free")

plot the number of valid records in each 2-week period

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "2 week",

statistic = "frequency", y.relation = "free")

An example of normalising data is shown in Figure 10.2. In this plot we have:

• Averaged the data to annual means;

• Chosen to normalise to the beginning of 2008;

• Set the line width to 4 and the line type to 1 (continuous line);

• Chosen to group the data in one panel.

Figure 10.2 shows that concentrations of NO2 and O3 have increased over the period
1998–2005; SO2 and CO have shown the greatest reductions (by about 60%), whereas
NOx concentrations have decreased by about 20%.

Another example is grouping pollutants from several sites on one plot. It is easy to
import data from several sites and to plot the data in separate panels e.g.

89

10 The timePlot function

data(mydata)

timePlot(selectByDate(mydata, year = 2003, month = "aug"),

pollutant = c("nox", "o3", "pm25", "pm10", "ws"),

y.relation = "free")
N

O
x,

 O
3,

 P
M

2.
5,

 P
M

10
, w

s

0

100

200

300

400

500

N
O

x

0

20

40

60

O
3

0

20

40

60

80

P
M

2.
5

0
20
40
60
80

100
120

P
M

10

2

4

6

8

Aug 04 Aug 11 Aug 18 Aug 25

w
in

d
sp

d.

NOx O3 PM2.5 PM10 wind spd.

FIGURE 10.1 Time series for several variables using the timePlot and the selectByDate

functions. The data shown are for August 2003.

import data from 3 sites

thedata <- importAURN(site = c("kc1", "my1", "nott"), year = 2005:2010)

plot it

timePlot(thedata, pollutant = "nox", type = "site", avg.time = "month")

Using the code above it is also possible to include several species. But what if we
wanted to plot NOx concentrations across all sites in one panel? An example of how to
do this is shown below. Note, in order to make referring to the columns easier, we will
drop the full (long) site name and use the site code instead.

90

10 The timePlot function

timePlot(mydata, pollutant = c("nox", "no2", "co", "so2", "pm10"),

avg.time = "year", normalise = "1/1/1998", lwd = 4, lty = 1,

group = TRUE, ylim = c(0, 120))

no
rm

al
is

ed
 le

ve
l

20

40

60

80

100

1998 1999 2000 2001 2002 2003 2004 2005

NOx NO2 CO SO2 PM10

FIGURE 10.2 An example of normalising time series data to fix values to equal 100 at the
beginning of 1998.

first drop site name

thedata <- subset(thedata, select = -site)

now reshape the data using the reshape package

thedata <- melt(thedata, id.vars = c("date", "code"))

thedata <- dcast(thedata, ... ~ code + variable)

The final step will make columns of each site/pollutant combination e.g. ‘KC1_nox’,
‘KC1_pm10’ and so on. It is then easy to use any of these names to make the plot:

timePlot(thedata, pollutant = c("KC1_nox", "MY1_nox", "NOTT_nox"),

avg.time = "month", group = TRUE)

An alternative way of selecting all columns containing the character ‘nox’ is to use
the grep command. For example:

timePlot(thedata, pollutant = names(thedata)[grep(pattern = "nox",

names(thedata))],

avg.time = "month", group = TRUE)

If wind speed (ws) and wind direction (wd) are available they can be used in plots and
shown as ‘wind vectors’. Plotting data in this way conveys more information in an easy
to understand way, which works best for relatively short time periods e.g. a pollution
episode lasting a few days. As an example Figure 10.3 shows the first 48 hours of NOx
and NO2 data with wind arrows shown. The arrows are controlled by a list of option
that control the length, shape and colour of the arrows. The maximum length of the
arrow plotted is a fraction of the plot dimension with the longest arrow being scale of
the plot x-y dimension. Note, if the plot size is adjusted manually by the user it should
be re-plotted to ensure the correct wind angle. The list may contain other options to
panel.arrows in the lattice package. Other useful options include length, which
controls the length of the arrow head and angle, which controls the angle of the arrow

91

11 The timeProp function

timePlot(head(mydata, 48), pollutant = c("nox", "no2"),

windflow = list(scale = 0.1, lwd = 2, col = "pink"),

lwd = 3, group = FALSE,

ylab = "concentration (ug/m3)")

co
nc

en
tr

at
io

n
(µ

g
m

−3
)

0

100

200

300

400

500

N
O

x

Jan 01 00:00 Jan 01 06:00 Jan 01 12:00 Jan 01 18:00 Jan 02 00:00 Jan 02 06:00 Jan 02 12:00 Jan 02 18:00

0

100

200

300

400

500

N
O

2

NOx NO2

FIGURE 10.3 An example of using the windflow option in timePlot.

head. Wind vector arrows can also be used with the scatterPlot function.

11 The timeProp function

The timeProp (‘time proportion’) function shows time series plots as stacked bar
charts. For a particular time, proportions of a chosen variable are shown as a stacked
bar chart. The different categories in the bar chart are made up from a character or
factor variable in a data frame. The function is primarily developed to support the plot-
ting of cluster analysis output from polarCluster (see Section 8) and trajCluster

(see Section 19.3) that consider local and regional (back trajectory) cluster analysis
respectively. However, the function has more general use for understanding time
series data. In order to plot time series in this way, some sort of time aggregation is
needed, which is controlled by the option avg.time.

The plot shows the value ofpollutanton the y-axis (averaged according toavg.time).
The time intervals are made up of bars split according to proportion. The bars there-
fore show how the total value of pollutant is made up for any time interval.

The timeProp function has the following options:

mydata A data frame containing the fields date, pollutant and a splitting vari-
able proportion

pollutant Name of the pollutant to plot contained in mydata.

proportion The splitting variable that makes up the bars in the bar chart e.g. proportion
= "cluster" if the output from polarCluster is being analysed. If
proportion is a numeric variable it is split into 4 quantiles (by default)
by cutData. If proportion is a factor or character variable then the
categories are used directly.

92

11 The timeProp function

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”,
“day”, “DSTday”, “week”, “month”, “quarter” or “year”. For much in-
creased flexibility a number can precede these options followed by a
space. For example, a timeAverage of 2 months would be period =

"2 month". In addition, avg.time can equal “season”, in which case
3-month seasonal values are calculated with spring defined as March,
April, May and so on.
Note that avg.time when used in timeProp should be greater than
the time gap in the original data. For example, avg.time = "day" for
hourly data is OK, but avg.time = "hour" for daily data is not.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. ”season”, ”year”,
”weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
typemust be of length one.

statistic Determines how the bars are calculated. The default (“mean”) will pro-
vide the contribution to the overall mean for a time interval. statistic
= "frequency"will give the proportion in terms of counts.

normalise If normalise = TRUE then each time interval is scaled to 100. This is
helpful to show the relative (percentage) contribution of the proportions.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time
appropriately to the range being considered. This does not always work
as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot

generally sets the date format sensibly there can be some situations where
the user wishes to have more control. For format types see strptime.
For example, to format the date like “Jan-2012” setdate.format = "%b-

%Y".

key.columns Number of columns to be used in the key. With many pollutants a single
column can make to key too wide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

93

11 The timeProp function

timeProp(selectByDate(mydata, year = 2003),

pollutant = "so2", avg.time = "3 day",

proportion = "wd", date.breaks = 10, key.position = "top",

key.columns = 8, ylab = "so2 (ug/m3)")

contribution weighted by mean
date

S
O

2
(µ

g
m

−3
)

2

4

6

8

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

wind dir.
NW W SW S SE E NE N

FIGURE 11.1 timeProp plot for SO2 concentrations in 2003. The data are categorised into 8
wind sectors for 3-day averages.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include “top”, “right”, “bottom” and “left”.

key.title The title of the key.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will
automatically try and format pollutant names and units properly e.g. by
subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto timeProp and cutData. For
example, timeProp passes the option hemisphere = "southern" on
to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common axis and title
labelling options (such as xlab, ylab, main) are passed to xyplot via
quickText to handle routine formatting.

An example of the timeProp function is shown in Figure 11.1. In this example SO2
concentrations are considered for 2003 (using the selectByDate function). The aver-
aging period is set to 3 days and the mean concentration is plotted and the proportion
contribution by wind sector is given. Other options are chosen to place the key at the
top and choose the number of columns used in the key. It is apparent from Figure 11.1
that the highest SO2 concentrations are dominated by winds from an easterly sector,
but actually occur throughout the year.

Note thatproportioncan be an existing categorical (i.e. factor or character) variable
in a data frame. If a numeric variable is supplied, then it is typically cut into four quantile
levels. So, for example, the plot below would show four intervals of wind speed, which
would help show the wind speed conditions that control high SO2 concentration — and
importantly, when they occur.

One of the key uses oftimeProp is to post-process cluster analysis data. Users should
consider the uses of timeProp for cluster analysis shown in Section 8 and Section 19.3.
In both these cases the cluster analysis yields a categorical output directly i.e. cluster,
which lends itself to analysis using timeProp.

94

12 The calendarPlot function

timeProp(selectByDate(mydata, year = 2003),

pollutant = "so2",

avg.time = "3 day",

proportion = "ws", date.breaks = 10,

key.position = "top", key.columns = 4)

12 The calendarPlot function

12.1 Purpose

Sometimes it is useful to visualise data in a familiar way. Calendars are the obvious
way to represent data for data on the time scale of days or months. The calendarPlot
function provides an effective way to visualise data in this way by showing daily con-
centrations laid out in a calendar format. The concentration of a species is shown by
its colour. The data can be shown in different ways. By default calendarPlot over-
lays the day of the month. However, if wind speed and wind direction are available
then an arrow can be shown for each day giving the vector-averaged wind direction.
In addition, the arrow can be scaled according to the wind speed to highlight both
the direction and strength of the wind on a particular day, which can help show the
influence of meteorology on pollutant concentrations.
calendarPlot can also show the daily mean concentration as a number on each

day and can be extended to highlight those conditions where daily mean (or maximum
etc.) concentrations are above a particular threshold. This approach is useful for
highlighting daily air quality limits e.g. when the daily mean concentration is greater
than 50 μgm−3.

The calendarPlot function can also be used to plot categorical scales. This is
useful for plotting concentrations expressed as an air quality index i.e. intervals of
concentrations that are expressed in ways like ‘very good’, ‘good’, ‘poor’ and so on.

12.2 Options available

mydata A data frame minimally containing date and at least one other numeric
variable. The date should be in either Date format or class POSIXct.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox".

year Year to plot e.g. year = 2003. If not supplied all data potentially span-
ning several years will be plotted.

month If only certain month are required. By default the function will plot an
entire year even if months are missing. To only plot certain months use
the month option where month is a numeric 1:12 e.g. month = c(1, 12)

to only plot January and December.

type Not yet implemented.

annotate This option controls what appears on each day of the calendar. Can be:
“date” — shows day of the month; “wd” — shows vector-averaged wind
direction, or “ws” — shows vector-averaged wind direction scaled by
wind speed. Finally it can be “value” which shows the daily mean value.

statistic Statistic passed to timeAverage.

95

12 The calendarPlot function

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

limits Use this option to manually set the colour scale limits. This is useful in the
case when there is a need for two or more plots and a consistent scale is
needed on each. Set the limits to cover the maximimum range of the data
for all plots of interest. For example, if one plot had data covering 0–60
and another 0–100, then set limits = c(0, 100). Note that data will
be ignored if outside the limits range.

lim A threshold value to help differentiate values above and below lim. It is
used when annotate = "value". See next few options for control over
the labels used.

col.lim For the annotation of concentration labels on each day. The first sets the
colour of the text below lim and the second sets the colour of the text
above lim.

col.arrow The colour of the annotated wind direction / wind speed arrows.

font.lim For the annotation of concentration labels on each day. The first sets the
font of the text below lim and the second sets the font of the text above
lim. Note that font = 1 is normal text and font = 2 is bold text.

cex.lim For the annotation of concentration labels on each day. The first sets the
size of the text below lim and the second sets the size of the text above
lim.

digits The number of digits used to display concentration values whenannotate
= "value".

data.thresh Data capture threshold passed totimeAverage. For example,data.thresh
= 75 means that at least 75% of the data must be available in a day for
the value to be calculate, else the data is removed.

labels If a categorical scale is required then these labels will be used. Note there
is one less label than break. For example, labels = c("good", "bad",

"very bad"). breaksmust also be supplied if labels are given.

breaks If a categorical scale is required then these breaks will be used. For
example, breaks = c(0, 50, 100, 1000). In this case “good” cor-
responds to values berween 0 and 50 and so on. Users should set the
maximum value of breaks to exceed the maximum data value to ensure
it is within the maximum final range e.g. 100–1000 in this case.

w.shift Controls the order of the days of the week. By default the plot shows
Saturday first (w.shift = 0). To change this so that it starts on a Monday
for example, set w.shift = 2, and so on.

remove.empty Should months with no data present be removed? Default is TRUE.

main The plot title; default is pollutant and year.

96

12 The calendarPlot function

key.header Adds additional text/labels to the scale key. For example, passingcalendarPlot(mydata,
key.header = "header", key.footer = "footer") adds addition
text above and below the scale key. These arguments are passed to
drawOpenKeyviaquickText, applying theauto.textargument, to han-
dle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for
further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters are passed onto thelattice functionlattice:levelplot,
with common axis and title labelling options (such as xlab, ylab, main)
being passed to via quickText to handle routine formatting.

12.3 Example of use

The function is called in the usual way. As a minimum, a data frame, pollutant and
year is required. So to show O3 concentrations for each day in 2003 (Figure 12.1). Note
that if year is not supplied the full data set will be used.

It is sometimes useful to annotate the plots with other information. It is possible to
show the daily mean wind angle, which can also be scaled to wind speed. The idea here
being to provide some information on meteorological conditions on each day. Another
useful option is to set annotate = "value" in which case the daily concentration will
be shown on each day. Furthermore, it is sometimes useful to highlight particular
values more clearly. For example, to highlight daily mean PM10 concentrations above
50 μgm−3. This is where setting lim (a concentration limit) is useful. In setting lim
the user can then differentiate the values below and above lim by colour of text, size
of text and type of text e.g. plain and bold.

Figure 12.2 highlights those days where PM10 concentrations exceed 50 μgm−3 by
making the annotation for those days bigger, bold and orange. Plotting the data in this
way clearly shows the days where PM10 >50 μgm−3.

Otheropenair functions can be used to plot other statistics. For example,rollingMean
could be used to calculate rolling 8-hour mean O3 concentrations. Then,calendarPlot
could be used with statistic = "max" to show days where the maximum daily
rolling 8-hour mean O3 concentration is greater than a certain threshold e.g. 100
or 120 μgm−3.

To show wind angle, scaled to wind speed (Figure 12.3).
Note again that selectByDate can be useful. For example, to plot select months:

calendarPlot(selectByDate(mydata, year = 2003, month = c("jun", "jul", "aug")),

pollutant = "o3", year = 2003)

Figure 12.4 shows an example of plotting data with a categorical scale. In this case the
options labels and breaks have been used to define concentration intervals and their
descriptions. Note that breaks needs to be one longer than labels. In the example
in Figure 12.4 the first interval (‘Very low’) is defined as concentrations from 0 to 50

97

12 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year =2003)

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

January−2003

S S M T W T F

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

February−2003

S S M T W T F

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

March−2003

S S M T W T F

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

April−2003

S S M T W T F

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

May−2003

S S M T W T F

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

June−2003

S S M T W T F

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

July−2003

S S M T W T F

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

August−2003

S S M T W T F

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

September−2003

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

October−2003

S S M T W T F

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

November−2003

S S M T W T F

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

December−2003

5

10

15

20

25

30

35

FIGURE 12.1 calendarPlot for O3 concentrations in 2003.

(ppb), ‘Low’ is 50 to 100 and so on. Note that the upper value of breaks should be
a number greater than the maximum value contained in the data to ensure that it is
encompassed. In the example given in Figure 12.4 the maximum daily concentration
is plotted. These types of plots are very useful for considering national or international
air quality indexes.

The user can explicitly set each colour interval:

calendarPlot(mydata, pollutant = "no2", year = 2003,

breaks = c(0, 50, 100, 150, 1000),

labels = c("Very low", "Low", "High", "Very High"),

cols = c("lightblue", "forestgreen", "yellow", "red"),

statistic = "max")

98

12 The calendarPlot function

data(mydata) ## make sure openair 'mydata' loaded fresh

calendarPlot(mydata, pollutant = "pm10", year = 2003, annotate = "value",

lim =50, cols = "Purples", col.lim = c("black", "orange"),

layout = c(4, 3))

S S M T W T F

1 2 3 4 5 6 7

28 29 30 31

28 32 36 25 15 15 36

45 27 33 36 26 26 56

28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

January−2003

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

77 48 49 64 61 51 36

25 38 38 51 70 60 73

40 21 41 42 30 44 39

31 31 37 25 22 67 47

February−2003

S S M T W T F

1 2 3 4

22 23 24 25 26 27 28

57 28 34

44 47 65 61 65 54 58

35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

March−2003

S S M T W T F

3 4 5 6 7 8 9

1 2

29 30 31

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

April−2003

S S M T W T F

1 2 3 4 5 6

26 27 28 29 30

54

29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

May−2003

S S M T W T F

5 6 7 8 9 10 11

1 2 3 4

31

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

June−2003

S S M T W T F

2 3 4 5 6 7 8

1

28 29 30

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

July−2003

S S M T W T F

1 2 3 4 5

26 27 28 29 30 31

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66

48

August−2003

S S M T W T F

4 5 6 7 8 9 10

1 2 3

30 31

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66

35 29 34 23 21 50 27

20 33 46 51 50
September−2003

S S M T W T F

1 2 3 4 5 6 7

27 28 29 30

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

October−2003

S S M T W T F

1 2 3 4 5

25 26 27 28 29 30 31

30 30

10 9 24 40 37 50 54

34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

November−2003

S S M T W T F

3 4 5 6 7 8 9

1 2

29 30

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69

29 27 41 50 47 34 34

30 34 28 23 27

December−2003

10

20

30

40

50

60

70

FIGURE 12.2 calendarPlot for PM10 concentrations in 2003 with annotations highlighting
those days where the concentration of PM10 >50 μgm−3. The numbers show the PM10 concen-
tration in μgm−3.

99

12 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year = 2003, annotate = "ws")

S S M T W T F

January−2003

S S M T W T F

February−2003

S S M T W T F

March−2003

S S M T W T F

April−2003

S S M T W T F

May−2003

S S M T W T F

June−2003

S S M T W T F

July−2003

S S M T W T F

August−2003

S S M T W T F

September−2003

S S M T W T F

October−2003

S S M T W T F

November−2003

S S M T W T F

December−2003

5

10

15

20

25

30

35

FIGURE 12.3calendarPlot for O3 concentrations in 2003 with annotations showing wind angle
scaled to wind speed i.e. the longer the arrow, the higher the wind speed. It shows for example
high O3 concentrations on the 17 and 18th of April were associated with strong north-easterly
winds.

100

12 The calendarPlot function

calendarPlot(mydata, pollutant = "no2", year = 2003,

breaks = c(0, 50, 100, 150, 1000),

labels = c("Very low", "Low", "High", "Very High"),

cols = "increment", statistic = "max")

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

January−2003

S S M T W T F

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

February−2003

S S M T W T F

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

March−2003

S S M T W T F

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

April−2003

S S M T W T F

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

May−2003

S S M T W T F

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

June−2003

S S M T W T F

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

July−2003

S S M T W T F

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

August−2003

S S M T W T F

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

September−2003

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

October−2003

S S M T W T F

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

November−2003

S S M T W T F

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

December−2003

Very low

Low

High

Very High

FIGURE 12.4 calendarPlot for NO2 concentrations in 2003 with a user-defined categorical
scale.

101

12 The calendarPlot function

Note that in the case of categorical scales it is possible to define the breaks and labels
first and then make the plot. For example:

breaks <- c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

labels <- c("Low.1", "Low.2", "Low.3", "Moderate.4", "Moderate.5", "Moderate.6",

"High.7", "High.8", "High.9", "Very High.10")

calendarPlot(mydata, pollutant = "no2", year = 2003,

breaks = breaks, labels = labels,

cols = "jet", statistic = "max")

It is also possible to first use rollingMean to calculate statistics. For example, if one
was interested in plotting the maximum daily rolling 8-hour mean concentration, the
data could be prepared and plotted as follows.

makes a new field 'rolling8o3'

dat <- rollingMean(mydata, pollutant = "o3", hours = 8)

breaks <- c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

labels <- c("Low.1", "Low.2", "Low.3", "Moderate.4", "Moderate.5", "Moderate.6",

"High.7", "High.8", "High.9", "Very High.10")

calendarPlot(dat, pollutant = "rolling8o3", year = 2003,

breaks = breaks, labels = labels,

cols = "jet", statistic = "max")

The UK has an air quality index for O3, NO2, PM10 and PM2.5 described in detail at
http://uk-air.defra.gov.uk/air-pollution/daqi and COMEAP (2011). The
air quality index is shown in Table 12.1. The index is most relevant to air quality fore-
casting, but is used widely for public information. Most other countries have similar
indexes. Note that the indexes are calculated for different averaging times dependent
on the pollutant: rolling 8-hour mean for O3, hourly means for NO2 and a fixed 24-hour
mean for PM10 and PM2.5.

TABLE 12.1 The UK daily air quality index (values in μgm−3).

Band Description NO2 O3 PM10 PM2.5

1 Low 0–66 0–33 0–16 0–11
2 Low 67–133 34–65 17–33 12–23
3 Low 134–199 66–99 34–49 24–34
4 Moderate 200–267 100–120 50–58 35–41
5 Moderate 268–334 121–140 59–66 42–46
6 Moderate 335–399 141–159 67–74 47–52
7 High 400–467 160–187 75–83 53–58
8 High 468–534 188–213 84–91 59–64
9 High 535–599 214–239 92–99 65–69

10 Very High 600 or more 240 or more 100 or more 70 or more

In the code below the labels and breaks are defined for each pollutant in Table 12.1
to make it easier to use the index in the calendarPlot function.

102

http://uk-air.defra.gov.uk/air-pollution/daqi

13 The TheilSen function

the labels - same for all species

labels <- c("1 - Low", "2 - Low", "3 - Low", "4 - Moderate", "5 - Moderate",

"6 - Moderate", "7 - High", "8 - High", "9 - High", "10 - Very High")

o3.breaks <-c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

no2.breaks <- c(0, 67, 134, 200, 268, 335, 400, 468, 535, 600, 1000)

pm10.breaks <- c(0, 17, 34, 50, 59, 67, 75, 84, 92, 100, 1000)

pm25.breaks <- c(0, 12, 24, 35, 42, 47, 53, 59, 65, 70, 1000)

Remember it is necessary to use the correct averaging time. Assuming data are
imported using importAURN or importKCL then the units will be in μgm−3— if not the
user should ensure this is the case. Note that rather than showing the day of the month
(the default), annotate = "value" can be used to show the actual numeric value on
each day. In this way, the colours represent the categorical interval the concentration
on a day corresponds to and the actual value itself is shown.

import test data

dat <- importAURN(site = "kc1", year = 2010)

no2 index example

calendarPlot(dat, year = 2010, pollutant = "no2", labels = labels,

breaks = no2.breaks, statistic = "max", cols = "jet")

for PM10 or PM2.5 we need the daily mean concentration

calendarPlot(dat, year = 2010, pollutant = "pm10", labels = labels,

breaks = pm10.breaks, statistic = "mean", cols = "jet")

for ozone, need the rolling 8-hour mean

dat <- rollingMean(dat, pollutant = "o3", hours = 8)

calendarPlot(dat, year = 2010, pollutant = "rolling8o3", labels = labels,

breaks = o3.breaks, statistic = "max", cols = "jet")

13 The TheilSen function

13.1 Purpose

see also

smoothTrend

timePlot

Calculating trends for air pollutants is one of the most important and common tasks
that can be undertaken. Trends are calculated for all sorts of reasons. Sometimes it is
useful to have a general idea about how concentrations might have changed. On other
occasions a more definitive analysis is required; for example, to establish statistically
whether a trend is significant or not. The whole area of trend calculation is a complex
one and frequently trends are calculated with little consideration as to their validity.
Perhaps the most common approach is to apply linear regression and not think twice
about it. However, there can be many pitfalls when using ordinary linear regression,
such as the assumption of normality, autocorrelation etc.

One commonly used approach for trend calculation in studies of air pollution is the
non-parametric Mann-Kendall approach (Hirsch et al. 1982). Wilcox (2010) provides
an excellent case for using ‘modern methods’ for regression including the benefits
of non-parametric approaches and bootstrap simulations. Note also that the all the
regression parameters are estimated through bootstrap resampling.

The Theil-Sen method dates back to 1950, but the basic idea pre-dates 1950 (Theil
1950; Sen 1968). It is one of those methods that required the invention of fast computers
to be practical. The basic idea is as follows. Given a set ofnx, ypairs, the slopes between
all pairs of points are calculated. Note, the number of slopes can increase by≈ n2 so
that the number of slopes can increase rapidly as the length of the data set increases.
The Theil-Sen estimate of the slope is the median of all these slopes. The advantage of

103

13 The TheilSen function

the using the Theil-Sen estimator is that it tends to yield accurate confidence intervals
even with non-normal data and heteroscedasticity (non-constant error variance). It is
also resistant to outliers — both characteristics can be important in air pollution. As
previously mentioned, the estimates of these parameters can be made more robust
through bootstrap-resampling, which further adds to the computational burden, but
is not an issue for most time series which are expressed either as monthly or annual
means. Bootstrap resampling also provides the estimate of p for the slope.

An issue that can be very important for time series is dependence or autocorrelation
in the data. Normal (in the statistical sense) statistics assume that data are indepen-
dent, but in time series this is rarely the case. The issue is that neighbouring data
points are similar to one another (correlated) and therefore not independent. Ignoring
this dependence would tend to give an overly optimistic impression of uncertainties.
However, taking account of it is far from simple. A discussion of these issues is beyond
the aims of this report and readers are referred to standard statistical texts on the issue.
In openair we follow the suggestion of Kunsch (1989) of setting the block length to n1/3
where n is the length of the time series.

There is a temptation when considering trends to use all the available data. Why?
Often it is useful to consider specific periods. For example, is there any evidence that
concentrations of NOx have decreased since 2000? Clearly, the time period used
depends on both the data and the questions, but it is good to be aware that considering
subsets of data can be very insightful.

Another aspect is that almost all trends are shown as mean concentration versus time;
typically by year. Such analyses are very useful for understanding how concentrations
have changed through time and for comparison with air quality limits and regulations.
However, if one is interested in understanding why trends are as they are, it can be
helpful to consider how concentrations vary in other ways. The trend functions in
openair do just this. Trends can be plotted by day of the week, month, hour of the day,
by wind direction sector and by different wind speed ranges. All these capabilities are
easy to use and their effectiveness will depend on the situation in question. One of the
reasons that trends are not considered in these many different ways is that there can be
a considerable overhead in carrying out the analysis, which is avoided by using these
functions. Few, for example, would consider a detailed trend analysis by hour of the
day, ensuring that robust statistical methods were used and uncertainties calculated.
However, it can be useful to consider how concentrations vary in this way. It may be,
for example, that the hours around midday are dominated by heavy vehicle emissions
rather than by cars — so is the trend for a pollutant different for those hours compared
with say, hours dominated by other vehicle types? Similarly, a much more focussed
trend analysis can be done by considering different wind direction, as this can help
isolate different source influences.

The TheilSen function is typically used to determine trends in pollutant concentra-
tions over several years. However, it can be used to calculate the trend in any numeric
variable. It calculates monthly mean values from daily, hourly or higher time resolution
data, as well as working directly with monthly means. Whether it is meaningful to
calculate trends over shorter periods of time (e.g. 2 years) depends very much on the
data. It may well be that statistically significant trends can be detected over relatively
short periods but it is another matter whether it matters. Because seasonal effects
can be important for monthly data, there is the option to deseasonalise the data first.
The timeVariation function are both useful to determine whether there is a seasonal
cycle that should be removed.

Note also that the symbols shown next to each trend estimate relate to how statisti-
cally significant the trend estimate is: p < 0.001 = ∗ ∗ ∗, p < 0.01 = ∗∗, p < 0.05 = ∗ and

104

13 The TheilSen function

p < 0.1 =+.

13.2 Options available

The TheilSen function has the following options:

mydata A data frame containing the field date and at least one other parame-
ter for which a trend test is required; typically (but not necessarily) a
pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

deseason Should the data be de-deasonalized first? IfTRUE the functionstl is used
(seasonal trend decomposition using loess). Note that if TRUE missing
data are first imputed using a Kalman filter and Kalman smooth.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

avg.time Can be “month” (the default), “season” or “year”. Determines the time
over which data should be averaged. Note that for “year”, six or more
years are required. For “season” the data are split up into spring: March,
April, May etc. Note that December is considered as belonging to winter
of the following year.

statistic Statistic used for calculating monthly values. Default is “mean”, but can
also be “percentile”. See timeAverage for more details.

percentile Single percentile value to use if statistic = "percentile" is chosen.

data.thresh The data capture threshold to use (the data using avg.time. A value
of zero means that all available data will be used in a particular period
regardless if of the number of values available. Conversely, a value of
100 will mean that all data will need to be present for the average to be
calculated, else it is recorded as NA.

alpha For the confidence interval calculations of the slope. The default is 0.05.
To show 99% confidence intervals for the value of the trend, choose
alpha = 0.01 etc.

dec.place The number of decimal places to display the trend estimate at. The
default is 2.

105

13 The TheilSen function

xlab x-axis label, by default "year".

lab.frac Fraction along the y-axis that the trend information should be printed at,
default 0.99.

lab.cex Size of text for trend information.

x.relation This determines how the x-axis scale is plotted. “same” ensures all panels
use the same scale and “free” will use panel-specfic scales. The latter is
a useful setting when plotting data with very different values.

y.relation This determines how the y-axis scale is plotted. “same” ensures all panels
use the same scale and “free” will use panel-specfic scales. The latter is
a useful setting when plotting data with very different values.

data.col Colour name for the data

trend list containing information on the line width, line type and line colour
for the main trend line and confidence intervals respectively.

text.col Colour name for the slope/uncertainty numeric estimates

slope.text The text shown for the slope (default is ‘units/year’).

cols Predefined colour scheme, currently only enabled for "greyscale".

shade The colour used for marking alternate years. Use “white” or “transpar-
ent” to remove shading.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

autocor Should autocorrelation be considered in the trend uncertainty estimates?
The default is FALSE. Generally, accounting for autocorrelation increases
the uncertainty of the trend estimate — sometimes by a large amount.

slope.percent Should the slope and the slope uncertainties be expressed as a per-
centage change per year? The default is FALSE and the slope is expressed
as an average units/year change e.g. ppb. Percentage changes can often
be confusing and should be clearly defined. Here the percentage change
is expressed as 100 * (C.end/C.start - 1) / (end.year - start.year). Where
C.start is the concentration at the start date and C.end is the concentra-
tion at the end date.
For avg.time = "year" (end.year - start.year) will be the total number
of years - 1. For example, given a concentration in year 1 of 100 units
and a percentage reduction of 5 units but the actual time span will be 6
years i.e. year 1 is used as a reference year. Things are slightly different
for monthly values e.g. avg.time = "month", which will use the total
number of months as a basis of the time span and is therefore able to deal
with partial years. There can be slight differences in the depending on
whether monthly or annual values are considered.

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time
appropriately to the range being considered. This does not always work

106

13 The TheilSen function

TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", deseason = TRUE)

[1] "Taking bootstrap samples. Please wait."

year

O
3

(p
pb

)

4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●●●
●

●

●●

●

●
●

●●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

0.37 [0.22, 0.5] units/year ***

FIGURE 13.1 Trends in ozone at Marylebone Road. The plot shows the deseasonalised monthly
mean concentrations of O3. The solid red line shows the trend estimate and the dashed red
lines show the 95 % confidence intervals for the trend based on resampling methods. The
overall trend is shown at the top-left as 0.38 (ppb) per year and the 95 % confidence intervals
in the slope from 0.21–0.51 ppb/year. The ∗ ∗ ∗ show that the trend is significant to the 0.001
level.

as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

plot Should a plot be produced. FALSE can be useful when analysing data to
extract trend components and plotting them in other ways.

silent When FALSE the function will give updates on trend-fitting progress.

... Other graphical parameters passed onto cutData and lattice:xyplot.
For example, TheilSen passes the option hemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common axis and title
labelling options (such as xlab, ylab, main) are passed to xyplot via
quickText to handle routine formatting.

13.3 Example of use

We first show the use of the TheilSen function by applying it to concentrations of O3.
The function is called as shown in Figure 13.1.

Because the function runs simulations to estimate the uncertainty in the slope, it
can take a little time for all the calculations to finish. These printed results show that in
this case the trend in O3 was +0.38 units (i.e. ppb) per year as an average over the entire
period. It also shows the 95 % confidence intervals in the trend ranged between 0.21 to
0.51 ppb/year. Finally, the significance level in this case is very high; providing very
strong evidence that concentrations of O3 increased over the period. The plot together
with the summary results is shown in Figure 13.1. Note that if one wanted to display
the confidence intervals in the slope at the 99 % confidence intervals, the code would
be Figure 13.2.

TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", alpha = 0.01)

107

13 The TheilSen function

Sometimes it is useful to consider a subset of data, perhaps by excluding some years.
This is easy with the subset function. The following code calculates trends for years
greater than 1999 i.e. from 2000 onwards.

TheilSen(subset(mydata, format(date, "%Y") > 1999), pollutant = "o3",

ylab = "ozone (ppb)")

It is also possible to calculate trends in many other ways e.g. by wind direction.
Considering how trends vary by wind direction can be extremely useful because the
influence of different sources invariably depends on the direction of the wind. The
TheilSen function splits the wind direction into 8 sectors i.e. N, NE, E etc. The Theil-
Sen slopes are then calculated for each direction in turn. This function takes rather
longer to run because the simulations need to be run eight times in total. Considering
concentrations of O3 again, the output is shown in Figure 13.2. Note that this plot is
specifically laid out to assist interpretation, with each panel located at the correct point
on the compass. This makes it easy to see immediately that there is essentially no trend
in O3 for southerly winds i.e. where the road itself has the strongest influence. On the
other hand the strongest evidence of increasing O3 are for northerly winds, where the
influence of the road is much less. The reason that there is no trend in O3 for southerly
winds is that there is always a great excess of NO, which reacts with O3 to form NO2. At
this particular location it will probably take many more years before O3 concentrations
start to increase when the wind direction is southerly. Nevertheless, there will always
be some hours that do not have such high concentrations of NO.

The option slope.percent can be set to express slope estimates as a percentage
change per year. This is useful for comparing slopes for sites with very different concen-
tration levels and for comparison with emission inventories. The percentage change
uses the concentration at the beginning and end months to express the mean slope.

The trend, T is defined as:

T[%.yr−1] = 100. (
CEnd
CStart

− 1)/Nyears (7)

where CEnd and CStart are the mean concentrations for the end and start date, re-
spectfully. Nyears is the number of years (or fractions of) the time series spans.

TheilSen(mydata, pollutant = "o3", deseason = TRUE,

slope.percent = TRUE)

The TheilSen function was written to work with hourly data, which is then averaged
into monthly or annual data. However, it is realised that users may already have data
that is monthly or annual. The function can therefore accept as input monthly or
annual data directly. However, it is necessary to ensure the date field is in the correct format.
Assuming data in an Excel file in the format dd/mm/YYYY (e.g. 23/11/2008), it is
necessary to convert this to a date format understood by R, as shown below. Similarly,
if annual data were available, get the dates in formats like ‘2005-01-01’, ‘2006-01-01’…
and make sure the date is again formatted using as.Date. Note that if dates are pre-
formatted as YYYY-mm-dd, then it is sufficient to use as.Datewithout providing any
format information because it is already in the correct format.

mydata$date = as.Date(mydata$date, format = "%d/%m/%Y")

Finally, the TheilSen function can consider trends at different sites, provided the
input data are correctly formatted. For input, a data frame with three columns is

108

13 The TheilSen function

TheilSen(mydata, pollutant = "o3", type = "wd", deseason = TRUE,

ylab = "ozone (ppb)")

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

year

O
3

(p
pb

)

0

5

10

15

20

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0.71 [0.41, 1.01] units/year ***
NW

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●
●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

0.91 [0.6, 1.2] units/year ***
N

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

0.59 [0.18, 1.08] units/year ***
NE

●

●●
●

●

●●

●●

●
●●

●

●

●

●

●

●
●
●

●
●

●
●
●
●●

●

●
●●

●
●
●●

●●●
●

●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●

●
●
●●

●●

●●
●

●
●
●●

●
●
●

●

●

●

0.21 [0.07, 0.35] units/year **
W

0

5

10

15

20

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●
●

●●

●●●●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.26 [0.05, 0.45] units/year *
E

0

5

10

15

20

1998 1999 2000 2001 2002 2003 2004 2005

●

●
●
●●

●
●●

●●
●

●
●
●
●

●
●

●●
●●

●
●●

●

●

●

●
●
●●●●

●
●●

●

●

●
●

●

●

●●

●
●●●

●

●

●
●

●
●●●

●

●●●
●●

●
●

●
●●

●
●
●
●

●
●
●
●●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

0.09 [−0.03, 0.21] units/year
SW

●
●
●
●
●

●●
●

●●●

●

●

●
●●●●

●
●

●

●

●●

●

●

●●●

●

●●●
●
●
●●

●

●●
●●

●
●

●

●

●
●●

●

●

●
●

●●
●
●
●
●
●
●
●●

●

●

●

●

●

●
●

●
●
●
●
●

●●●

●●

●

●

●
●

●●
●●

●

●

0.01 [−0.08, 0.12] units/year
S

1998 1999 2000 2001 2002 2003 2004 2005

●●
●●

●

●●

●

●●●
●●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●●

●
●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

0.03 [−0.09, 0.16] units/year
SE

FIGURE 13.2 Trends in ozone at Marylebone Road split by eight wind sectors. The TheilSen
function will automatically organise the separate panels by the different compass directions.

109

13 The TheilSen function

required: date, pollutant and site. The call would then be, for example:

TheilSen(mydata, pollutant = "no2", type = "site")

13.4 Output

The TheilSen function provides lots of output data for further analysis or adding to a
report. To obtain it, it is necessary to read it into a variable:

MKresults <- TheilSen(mydata, pollutant = "o3", deseason = TRUE, type = "wd")

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

[1] "Taking bootstrap samples. Please wait."

This returns a list of two data frames containing all the monthly mean values and trend
statistics and an aggregated summary. The first 6 lines are shown next:

head(MKresults$data[[1]])

wd date conc a b upper.a upper.b lower.a

1 E 1998-01-01 5.552253 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

2 E 1998-02-01 2.919639 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

3 E 1998-03-01 3.849363 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

4 E 1998-04-01 4.051668 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

5 E 1998-05-01 2.304686 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

6 E 1998-06-01 -1.560438 -2.825001 0.0007185124 -

8.826666 0.001230109 3.848278

lower.b p p.stars slope intercept intercept.lower

1 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

2 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

3 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

4 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

5 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

6 0.0001449688 0.01669449 * 0.262257 -2.825001 3.848278

intercept.upper lower upper slope.percent lower.percent

1 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

2 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

3 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

4 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

5 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

6 -8.826666 0.05291362 0.4489896 5.79801 0.9925881

upper.percent

1 11.9614

2 11.9614

3 11.9614

4 11.9614

5 11.9614

6 11.9614

110

14 The smoothTrend function

Often only the trend statistics are required and not all the monthly values. These
can be obtained by:

MKresults$data[[2]]

wd p.stars date conc a b upper.a

1 E * 2001-09-15 5.989974 -2.825001 7.185124e-04 -8.8266663

2 N *** 2001-09-15 9.786267 -19.142102 2.485907e-03 -28.7157702

3 NE *** 2001-09-15 9.728994 -9.728741 1.624970e-03 -24.8702270

4 NW *** 2001-09-15 9.786755 -12.940875 1.937119e-03 -22.4192235

5 S 2001-09-15 5.052728 4.472516 2.509968e-05 1.0744367

6 SE 2001-09-15 5.780645 4.822713 7.357549e-05 0.8230425

7 SW 2001-09-15 4.761100 1.818359 2.444766e-04 -1.9192744

8 W ** 2001-09-15 5.618727 -1.178793 5.736058e-04 -5.6090971

upper.b lower.a lower.b p slope intercept

1 0.0012301086 3.848278 1.449688e-04 0.016694491 0.262257022 -2.825001

2 0.0032893251 -9.725509 1.649012e-03 0.000000000 0.907355964 -19.142102

3 0.0029640572 3.185458 5.003924e-04 0.000000000 0.593114074 -9.728741

4 0.0027690442 -3.396506 1.122414e-03 0.000000000 0.707048447 -12.940875

5 0.0003281521 7.156572 -2.081018e-04 0.868113523 0.009161382 4.472516

6 0.0004318379 8.727162 -2.572925e-04 0.684474124 0.026855053 4.822713

7 0.0005716588 5.538235 -8.999974e-05 0.110183639 0.089233973 1.818359

8 0.0009552189 3.041723 2.044787e-04 0.003338898 0.209366110 -1.178793

intercept.lower intercept.upper lower upper slope.percent

1 3.848278 -8.8266663 0.05291362 0.4489896 5.7980099

2 -9.725509 -28.7157702 0.60188926 1.2006037 14.4454302

3 3.185458 -24.8702270 0.18264323 1.0818809 8.6085473

4 -3.396506 -22.4192235 0.40968128 1.0107011 10.2917646

5 7.156572 1.0744367 -0.07595715 0.1197755 0.1937191

6 8.727162 0.8230425 -0.09391177 0.1576208 0.4816904

7 5.538235 -1.9192744 -0.03284991 0.2086555 2.0662607

8 3.041723 -5.6090971 0.07463472 0.3486549 4.4665024

lower.percent upper.percent

1 0.9925881 11.961401

2 8.4310805 24.381910

3 2.1997335 19.875875

4 5.0687904 17.131133

5 -1.5105886 2.703463

6 -1.5405900 3.008348

7 -0.7113745 5.313247

8 1.4540385 8.381275

In the results above the ‘lower’ and ‘upper’ fields provide the 95% (or chosen confi-
dence interval using the alpha option) of the trend and ‘slope’ is the trend estimate
expressed in units/year.

14 The smoothTrend function

14.1 Purpose

see also

TheilSen

timePlot

The smoothTrend function calculates smooth trends in the monthly mean concentra-
tions of pollutants. In its basic use it will generate a plot of monthly concentrations
and fit a smooth line to the data and show the 95 % confidence intervals of the fit. The
smooth line is essentially determined using Generalized Additive Modelling using the
mgcv package. This package provides a comprehensive and powerful set of methods
for modelling data. In this case, however, the model is a relationship between time
and pollutant concentration i.e. a trend. One of the principal advantages of this ap-
proach is that the amount of smoothness in the trend is optimised in the sense that it is
neither too smooth (therefore missing important features) nor too variable (perhaps

111

14 The smoothTrend function

fitting ‘noise’ rather than real effects). Some background information on the use of
this approach in an air quality setting can be found in Carslaw et al. (2007).

Appendix B considers smooth trends in more detail and considers how different
models can be developed that can be quite sophisticated. Readers should consider this
section if they are considering trend analysis in more depth.

The user can select to deseasonalise the data first to provide a clearer indication of
the overall trend on a monthly basis. The data are deseasonalised using the The stl
function. The user may also select to use bootstrap simulations to provide an alterna-
tive method of estimating the uncertainties in the trend. In addition, the simulated
estimates of uncertainty can account for autocorrelation in the residuals using a block
bootstrap approach.

14.2 Options available

The smoothTrend function has the following options:

mydata A data frame containing the field date and at least one other parame-
ter for which a trend test is required; typically (but not necessarily) a
pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

deseason Should the data be de-deasonalized first? IfTRUE the functionstl is used
(seasonal trend decomposition using loess). Note that if TRUE missing
data are first imputed using a Kalman filter and Kalman smooth.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

statistic Statistic used for calculating monthly values. Default is “mean”, but can
also be “percentile”. See timeAverage for more details.

avg.time Can be “month” (the default), “season” or “year”. Determines the time
over which data should be averaged. Note that for “year”, six or more
years are required. For “season” the data are plit up into spring: March,
April, May etc. Note that December is considered as belonging to winter
of the following year.

percentile Percentile value(s) to use ifstatistic = "percentile" is chosen. Can
be a vector of numbers e.g. percentile = c(5, 50, 95)will plot the
5th, 50th and 95th percentile values together on the same plot.

112

14 The smoothTrend function

data.thresh The data capture threshold to use (the data using avg.time. A value
of zero means that all available data will be used in a particular period
regardless if of the number of values available. Conversely, a value of
100 will mean that all data will need to be present for the average to be
calculated, else it is recorded as NA. Not used if avg.time = "default".

simulate Should simulations be carried out to determine the Mann-Kendall tau
and p-value. The default is FALSE. If TRUE, bootstrap simulations are
undertaken, which also account for autocorrelation.

n Number of bootstrap simulations if simulate = TRUE.

autocor Should autocorrelation be considered in the trend uncertainty estimates?
The default is FALSE. Generally, accounting for autocorrelation increases
the uncertainty of the trend estimate sometimes by a large amount.

cols Colours to use. Can be a vector of colours e.g. cols = c("black",

"green") or pre-defined openair colours — see openColours for more
details.

shade The colour used for marking alternate years. Use “white” or “transpar-
ent” to remove shading.

xlab x-axis label, by default “year”.

y.relation This determines how the y-axis scale is plotted. ”same” ensures all panels
use the same scale and ”free” will use panel-specfic scales. The latter is
a useful setting when plotting data with very different values. ref.x See
ref.y for details. In this case the correct date format should be used for
a vertical line e.g. ref.x = list(v = as.POSIXct("2000-06-15"),

lty = 5).

ref.x See ref.y.

ref.y A list with details of the horizontal lines to be added representing refer-
ence line(s). For example, ref.y = list(h = 50, lty = 5)will add
a dashed horizontal line at 50. Several lines can be plotted e.g. ref.y =

list(h = c(50, 100), lty = c(1, 5), col = c("green", "blue")).
Seepanel.abline in thelatticepackage for more details on adding/con-
trolling lines.

key.columns Number of columns used if a key is drawn when using the optionstatistic
= "percentile".

name.pol Names to be given to the pollutant(s). This is useful if you want to give a
fuller description of the variables, maybe also including subscripts etc.

ci Should confidence intervals be plotted? The default is FALSE.

alpha The alpha transparency of shaded confidence intervals - if plotted. A
value of 0 is fully transparent and 1 is fully opaque.

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time
appropriately to the range being considered. This does not always work
as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

113

14 The smoothTrend function

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

k This is the smoothing parameter used by the gam function in package
mgcv. By default it is not used and the amount of smoothing is optimised
automatically. However, sometimes it is useful to set the smoothing
amount manually using k.

... Other graphical parameters are passed ontocutDataandlattice:xyplot.
For example,smoothTrendpasses the optionhemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common graphical
arguments, such as xlim and ylim for plotting ranges and pch and cex

for plot symbol type and size, are passed on xyplot, although some local
modifications may be applied by openair. For example, axis and title
labelling options (such as xlab, ylab and main) are passed to xyplot via
quickText to handle routine formatting. One special case here is that
many graphical parameters can be vectors when used with statistic =

"percentile" and a vector of percentile values, see examples below.

14.3 Example of use

We apply the function to concentrations of O3 and NO2 using the code below. The
first plot shows the smooth trend in raw O3 concentrations, which shows a very clear
seasonal cycle. By removing the seasonal cycle of O3, a better indication of the trend
is given, shown in the second plot. Removing the seasonal cycle is more effective
for pollutants (or locations) where the seasonal cycle is stronger e.g. for ozone and
background sites. Figure 14.1 shows the results of the simulations for NO2 without
the seasonal cycle removed. It is clear from this plot that there is little evidence of a
seasonal cycle. The principal advantage of the smoothing approach compared with
the Theil-Sen method is also clearly shown in this plot. Concentrations of NO2 first
decrease, then increase strongly. The trend is therefore not monotonic, violating the
Theil-Sen assumptions. Finally, the last plot shows the effects of first deaseasonalising
the data: in this case with little effect.

The smoothTrend function share many of the functionalities of the TheilSen func-
tion. Figure 14.2 shows the result of applying this function to O3 concentrations. The
code that produced Figure 14.2 was:

The smoothTrend function can easily be used to gain a large amount of information
on trends easily. For example, how do trends in NO2, O3 and PM10 vary by season and
wind sector. There are 8 wind sectors and four seasons i.e. 32 plots. In Figure 14.3
all three pollutants are chosen and two types (season and wind direction). We also
reduce the number of axis labels and the line to improve clarity. There are numerous
combinations of analyses that could be produced here and it is very easy to explore the
data in a wide number of ways.

114

14 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", ylab = "concentration (ppb)",

main = "monthly mean o3")

smoothTrend(mydata, pollutant = "o3", deseason = TRUE, ylab = "concentration (ppb)",

main = "monthly mean deseasonalised o3")

smoothTrend(mydata, pollutant = "no2", simulate = TRUE, ylab = "concentration (ppb)",

main = "monthly mean no2 (bootstrap uncertainties)")

[1] "Taking bootstrap samples. Please wait..."

smoothTrend(mydata, pollutant = "no2", deseason = TRUE, simulate =TRUE,

ylab = "concentration (ppb)",

main = "monthly mean deseasonalised no2 (bootstrap uncertainties)")

[1] "Taking bootstrap samples. Please wait..."

monthly mean O3

year

co
nc

en
tr

at
io

n
(p

pb
)

5

10

15

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

monthly mean deseasonalised O3

year

co
nc

en
tr

at
io

n
(p

pb
)

4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●●●
●

●

●●

●

●
●

●●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

monthly mean NO2 (bootstrap uncertainties)

year

co
nc

en
tr

at
io

n
(p

pb
)

40

50

60

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

monthly mean deseasonalised NO2 (bootstrap uncertainties)

year

co
nc

en
tr

at
io

n
(p

pb
)

40

50

60

70

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

FIGURE 14.1 Examples of the smoothTrend function applied to Marylebone Road

115

14 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", deseason = TRUE,

type = "wd")

year

O
3

0

5

10

15

20

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●
●●●●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

NW

1998 1999 2000 2001 2002 2003 2004 2005

●

●
●
●●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●●
●

●

●

●

N

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

NE

●

●●
●

●

●●
●●

●
●●
●
●

●
●

●

●
●●

●
●

●
●
●
●●

●

●
●●
●
●
●●

●●●
●

●

●

●

●
●

●●●
●
●

●

●●●
●
●

●
●●
●
●

●

●
●

●

●

●
●

●

●●●

●
●●●●●

●●
●
●
●●
●

●
●
●

●

●

●

W

0

5

10

15

20

●

●
●●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●
●
●●

●●●●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

E

0

5

10

15

20

1998 1999 2000 2001 2002 2003 2004 2005

●

●
●
●●
●
●●●

●●
●
●
●
●
●
●

●●
●●
●●
●
●

●

●
●
●●●●●

●
●●

●
●
●●

●

●

●●
●
●●●

●

●

●
●

●
●●●

●
●●●●●

●
●
●●●●●

●
●
●
●
●
●●

●

●
●
●

●

●
●

●

●

●●
●

●

●

SW

●
●
●●
●

●●
●

●●●

●

●

●
●●●●

●
●

●

●

●●

●

●

●●●
●

●●●
●●
●●

●

●●
●●
●
●

●

●

●
●●

●

●
●
●

●●
●●●●

●
●
●●
●
●

●

●

●

●
●

●
●
●
●
●

●●●

●●

●

●

●
●

●●
●●●

●

S

1998 1999 2000 2001 2002 2003 2004 2005

●●
●●
●

●●
●
●●●●●

●

●

●●●

●

●

●

●

●

●●●
●

●●

●

●

●

●●
●●
●
●
●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●
●

●●●

●
●

●

●
●

●
●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●
●
●●●

●
●

●

SE

FIGURE 14.2 Trends in O3 using the smoothTrend function applied to Marylebone Road. The
shading shows the estimated 95 % confidence intervals. This plot can usefully be compared
with Figure 13.2.

116

14 The smoothTrend function

smoothTrend(mydata, pollutant = c("no2", "pm10", "o3"), type = c("wd", "season"),

date.breaks = 3, lty = 0)

year

N
O

2,
 P

M
10

, O
3

0

20

40

60

80

100

●
●●

●

●
●

●●

● ●
●●

●
●

●

●

●

●

●●
●

●
●●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●
●●

●
●●●

●

●●
●●
●

●●● ●

●●

●

●●

●

●

●
●
●● ●●

●

N

sp
rin

g
(M

A
M

)

1998 2000 2002 2004

●●
●

●

●● ●●
● ●

●

● ●
●

● ●

●

●

●
●

●
●

●

●
●●

● ●
●●

●

●
●

●

●●
●

●●
●
●
●

●●●
●
●

●

●●●
●

●
● ●●

●
●

●
●

●

●

● ●

●
● ●●● ●

●

●

NE

●
●● ●

●

●

●

●

●

●●
●

●

●
●

●●

● ●

●● ●

●

●

●

●●

●
●●

●

●

●
●

●●
●

●

●
●
●

● ●
●
●

●

●

●

●
●●

●
●
●

●
●
●

●●

●

●
●● ●

●●
●●
●

●
●

●

E

1998 2000 2002 2004

●●

●
●

●
●

●

●

●
●●●

●
●●

●●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

● ●

●

●

●
●● ●●

●
●

●●
●
●●

●
●●

●
●●

●
●●

●
●
●

●
●● ●

●●
●●

●

●
●●

SE

●
●

●

●

●●

●

●

●

●●●

●
●
●

●
●●

●●

●

●

●●

●●
●

●
●
●

●

●

●

●

●

● ●●●
●●
●

●
●
●

●

●
●

●
●●

●
●●

●●
●

●●
● ●●●

●
●● ●●● ●●

●

S

1998 2000 2002 2004

●
●●

●

●

● ●

●●
●●

● ●●

●

●●●
●●●

●

●

●

●●
●

●
●
●

●

●● ●
●●

●
●

●

●

●
●

●
●●

●

●●

●●
● ●●● ●●

●
●●● ●●● ●●● ●●● ●●

●

SW

●
●
● ●

●

●

●
●●

●

●●
●●●

●

●

●
●●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●
● ●●

●

●

●●
●
●●

●●
●

●●● ●
●● ●●

●
●
●● ●●

●
●
●
● ●●

●
●●

●

W

1998 2000 2002 2004

●

●●
●

●

●

●

●● ●

●

● ●
●

●

●

●

●
●
●
●

●
●

●●

●
● ●

●

●

●
●●

●

●

● ●●
● ●

●●

●

●
● ●

●
●

●
●
● ●

●●
●
●
● ●

●
●

●
●● ●●●

●
●
●

●

●

●

NW

●
●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●● ●
●

●
●

●●
● ●●

● ●
●●

●

●
● ●

●
● ●●

●

●
●

●

●

●● ●
●
● ●

●
●

●

●● ●

●
●

●

●

● ●●
● ●

su
m

m
er

 (
JJ

A
)

●

●●

●

●
●

●

●

● ●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

● ●●

●

●

●●
●

●

●
●

●
●

●
●

● ●

●
●

●●●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●
●

●

●
●

●

●
●

●

●

●

●●

●●
●

●

●

●
●
●●

●
●●

●

●

●
●

●●

●

●
● ●

●

●
●●
● ●

●
●

●
●●

●
●

●

●
●

●

●

●
●
●

●

●● ●

●●

●

●
●

●●
●

●
●

●
●

●

●

●

●●●
●

●

●

●●● ●
●
●

●●

●

●
●

●

●

●

● ●

●● ●
●
● ●

●●
●●●

●

●●
●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●●

●
●●

●

●
●

● ●
●

●

●
●

●
●
●

●

●●●
●

●● ●
●● ●●● ●●● ●●●

●●

●

●●●
●

●●
●

●

●
●

●
●
●

●

●
●

●●●

●
●

●

●
●●

●

●●
●

●
●

● ●●● ●●●
●

●●
●
●

●

●
●● ●

●● ●●● ●●●
●●● ●●●

●●● ●●● ●

●●
● ●●●

●●● ●●● ●
●
●

●

●

●
●

●

●
●

●●
●

●

●●

●●
●

●
●●

●●

●
●●
●

●
●
● ●

●● ●●● ●●●
●
●●

●●
●

●●● ●●● ●

0

20

40

60

80

100

●●●
●●●

●●
●

●●

●

●
●●

●●●

●
●

●
●

●●● ●

●
●

●●●
●
●
● ●

●● ●●

●

●●

●

●

●●
●
●●

●●
●

●

●
●

●●
●

●

●

●
●
●●

●

0

20

40

60

80

100

●

●

● ●
●

● ●

●

● ●
●

●
●●

●
●

●
●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

●
●
●

●

●
●●

●
●

●

●●
● ●●

● ●
●●

●

●
●

●
●

●

●●● ●
●

●

au
tu

m
n

(S
O

N
)

●

●

●

●

●
●

●

●

● ●

●
● ●●

●

●

●
●

●●
●

●

●
●

●

●

●
●●

● ●

●

● ●●●
●

●

●

●

●
●

●●● ●●● ●●●

●

●
●

●

●●
●●●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●
●
●

●

●●

●

●
●

●

●
●

●
●
●

●
●

●

●
●

●

●●

●

●
●

● ●

●●

●●
●

●
●● ●●● ●●●

●

●● ●●●

●

●●

●

●
●

●

●

●

●
●●

●●
●

●

●
●

●●
● ●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●●

●
●●● ●

●
●

●
●●

●
●●

●●● ●●●
●
●●

●
●● ●●●

●
●● ●

●
● ●

●
● ●●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●
● ●

●
●

●
●
●

●

●●
●●

● ●●
●

●●● ●●● ●●● ●●●
●●● ●●●

●●
●

●●● ●●

●

●
●
●

●
●●

●●
●

●
●
●

●●
●

●
●

●

●

●
● ●●●

●

●
●

●
●●

●

●
●

●●●

●●● ●●● ●●● ●●● ●●● ●●●
●●●

●●
●

●●●

●
●

●

●

●●

●
●
●

●

●

●

●

●●

●●
●

●

●●

●
●

●

●

●

●

●
●●

●
●

●

●●
●

●●● ●●●
●●●

●●●
●●● ●●● ●●●

●●
●

●

●

●
●
●●

●
●
●

●●
●

●
●●

●

●

●
●
●●

●
●

●
●●●

●

●
●

●

●
●

●●●
●

●

●

●●● ●●
● ●

●●
●

●
● ●

●
●

●●● ●

●
●

1998 2000 2002 2004

●

●

●●●
●●

●

●

●

●
●

●

●
●●

● ●

●
●

●

●●●
●

●●●
●●

●

●

●

● ●

●

●
●

●

●

●
●●

●

●●

●●
●●● ●●●

●

●
●

●●

●

●
●

●
●
●
●

●

●●

w
in

te
r

(D
JF

)

●

●

●

●
● ●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

● ●
●

●

●●
●

●●
●

●

●

●

●

●

●●●
●

●
●

●
●

●
●
● ●●

●

●
●

●●

●

●
●
● ●

●

●
●●
●

1998 2000 2002 2004

●
● ●●

●
●
●

●
●

●

●
● ●●

●
●

●

●

●
●
●

●
● ●

●●

●

● ●●●

●
● ●

●

●

●
●

●
●

●

●

●● ●
●
●

●
● ●●● ●● ●●● ●●

●
●
●●

●●
●

●
●

●
●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●

●

●
●●

●●

●
●
●

● ●

●

● ●

●
●

●● ●●● ●●● ●●● ●●
● ●●● ●●● ●●●

1998 2000 2002 2004

●

● ●

●

●
●
●

●
●●
●

●
●
●

●

●

●
●●●

●
●

●

●

●

●
●

●

●●
●

●●●

●

●●

●

●

●

●●

● ●

●

●

●● ●●●
●●● ●●● ●●

●
●●●

●●● ●●●

●

●

●
●●

●
●●

●●

●

●

●
● ●

●●
●

●● ●

●

●

●

●

●●● ●

●●

●
●

●

●
●
● ●

●

●

●
●

●
●

●

●

●
●

●●● ●●●
●
●● ●●

● ●●●
●●● ●

●
●

1998 2000 2002 2004

●

●
●●

● ●●
●

●●
●

●
●●

●●

●

●
●

●
●●
●

●

●
●
●
●

●

●●
●

●
●

●
●
●

●●
● ●●

● ●
●
●

●● ●●
● ●●

●
●●●

●●

●

●●●
●●● ●●

●

0

20

40

60

80

100

●

● ●
●
● ●

●
●

●●
●

●

●

● ●●

●
●
●

●

●

●
●

●
●

●●●
●
●●

●

●

●

●

●

● ●
●● ●

●

●

●

●●

●● ●
●
●

●●
●

●●

●
●●

●

●

●
● ●●●

●

●
●

● ● ● ● ● ● ● ● ●NO2 PM10 O3

FIGURE 14.3 The smoothTrend function applied to three pollutants, split by wind sector and
season.

117

15 The timeVariation function

15 The timeVariation function

15.1 Purpose

see also

linearRelation
In air pollution, the variation of a pollutant by time of day and day of week can reveal
useful information concerning the likely sources. For example, road vehicle emissions
tend to follow very regular patterns both on a daily and weekly basis. By contrast some
industrial emissions or pollutants from natural sources (e.g. sea salt aerosol) may well
have very different patterns.

The timeVariation function produces four plots: day of the week variation, mean
hour of day variation and a combined hour of day – day of week plot and a monthly
plot. Also shown on the plots is the 95 % confidence interval in the mean. These
uncertainty limits can be helpful when trying to determine whether one candidate
source is different from another. The uncertainty intervals are calculated through
bootstrap re-sampling, which will provide better estimates than the application of
assumptions based on normality, particularly when there are few data available. The
function can consider one or two input variables. In addition, there is the option
of ‘normalising’ concentrations (or other quantities). Normalising is very useful for
comparing the patterns of two different pollutants, which often cover very different
ranges in concentration. Normalising is achieved by dividing the concentration of
a pollutant by its mean value. Note also that any other variables besides pollutant
concentrations can be considered e.g. meteorological or traffic data.

There is also an option differencewhich is very useful for considering the differ-
ence in two time series and how they vary over different temporal resolutions. Again,
bootstrap re-sampling methods are used to estimate the uncertainty of the difference
in two means.

Averaging wind direction

Care has been taken to ensure that wind direction (wd) is vector-averaged. Less

obvious though is the uncertainty in wind direction. A pragmatic approach has been

adopted here that considers how wind direction changes. For example, consider the

following wind directions: 10, 10, 10, 180, 180, 180°. The standard deviation of these

numbers is 93°. However, what actually occurs is the wind direction is constant at

10° then switches to 180°. In terms of changes there is a sequence of numbers: 0,

0, 170, 0, 0 with a standard deviation of 76°. We use the latter method as a basis of

calculating the 95% confidence intervals in the mean.

There are also problems with simple averaging—for example, what is the average of 20

and 200°. It can’t be known. In some situations where the wind direction is bi-modal with

differences around 180°, the mean can be ‘unstable’. For example, wind that is funnelled

along a valley forcing it to be either easterly or westerly. Consider for example the mean

of 0° and 179° (89.5°), but a small change in wind direction to 181° gives a mean of

270.5°. Some care should be exercised therefore when averaging wind direction. It is

always a good idea to use the windRose function with type set to ‘month’ or ‘hour’.

The timeVariation function is probably one of the most useful functions that can
be used for the analysis of air pollution. Here are a few uses/advantages:

• Variations in time are one of the most useful ways of characterising air pollu-
tion for a very wide range of pollutants including local urban pollutants and

118

15 The timeVariation function

tropospheric background concentrations of ozone and the like.

• The function works well in conjunction with other functions such as polarPlot,
where the latter may identify conditions of interest (say a wind speed/direction
range). By sub-setting for those conditions in timeVariation the temporal char-
acteristics of a particular source could be characterised and perhaps contrasted
with another subset of conditions.

• The function can be used to compare a wide range of variables, if available.
Suggestions include meteorological e.g. boundary layer height and traffic flows.

• The function can be used for comparing pollutants over different sites. See
§(24.7) for examples of how to do this.

• The function can be used to compare one part of a time series with another. This
is often a very powerful thing to do, particularly if concentrations are normalised.
For example, there is often interest in knowing how diurnal/weekday/seasonal
patterns vary with time. If a pollutant showed signs of an increase in recent
years, then splitting the data set and comparing each part together can provide
information on what is driving the change. Is there, for example, evidence that
morning rush hour concentrations have become more important, or Sundays
have become relatively more important? An example is given below using the
splitByDate function.

• timeVariation can be used to consider the differences between two time series,
which will have multiple benefits. For example, for model evaluation it can be
very revealing to consider the difference between observations and modelled
values over different time scales. Considering such differences can help reveal
the character and some of the reasons for why a model departs from reality.

15.2 Options available

The timeVariation function has the following options:

mydata A data frame of hourly (or higher temporal resolution data). Must include
a date field and at least one variable to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted, in which
case a form like pollutant = c("nox", "co") should be used.

local.tz Should the results be calculated in local time that includes a treatment of
daylight savings time (DST)? The default is not to consider DST issues,
provided the data were imported without a DST offset. Emissions activity
tends to occur at local time e.g. rush hour is at 8 am every day. When the
clocks go forward in spring, the emissions are effectively released into the
atmosphere typically 1 hour earlier during the summertime i.e. when DST
applies. When plotting diurnal profiles, this has the effect of “smearing-
out” the concentrations. Sometimes, a useful approach is to express time
as local time. This correction tends to produce better-defined diurnal pro-
files of concentration (or other variables) and allows a better comparison
to be made with emissions/activity data. If set toFALSE then GMT is used.
Examples of usage include local.tz = "Europe/London", local.tz
= "America/New_York". See cutData and import for more details.

119

15 The timeVariation function

normalise Should variables be normalised? The default is FALSE. If TRUE then the
variable(s) are divided by their mean values. This helps to compare the
shape of the diurnal trends for variables on very different scales.

xlab x-axis label; one for each sub-plot.

name.pol Names to be given to the pollutant(s). This is useful if you want to give a
fuller description of the variables, maybe also including subscripts etc.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Only one type is allowed intimeVariation.

group This sets the grouping variable to be used. For example, if a data frame
had a column site setting group = "site" will plot all sites together
in each panel. See examples below.

difference If two pollutants are chosen then setting difference = TRUEwill also
plot the difference in means between the two variables as pollutant[2]
- pollutant[1]. Bootstrap 95% confidence intervals of the difference
in means are also calculated. A horizontal dashed line is shown at y = 0.

statistic Can be “mean” (default) or “median”. If the statistic is ‘mean’ then the
mean line and the 95% confidence interval in the mean are plotted by
default. If the statistic is ‘median’ then the median line is plotted together
with the 5/95 and 25/75th quantiles are plotted. Users can control the
confidence intervals with conf.int.

conf.int The confidence intervals to be plotted. Ifstatistic = "mean" then the
confidence intervals in the mean are plotted. Ifstatistic = "median"

then the conf.int and 1 - conf.int quantiles are plotted. conf.int
can be of length 2, which is most useful for showing quantiles. For exam-
ple conf.int = c(0.75, 0.99)will yield a plot showing the median,
25/75 and 5/95th quantiles.

B Number of bootstrap replicates to use. Can be useful to reduce this value
when there are a large number of observations available to increase the
speed of the calculations without affecting the 95% confidence interval
calculations by much.

ci Should confidence intervals be shown? The default isTRUE. Setting this to
FALSE can be useful if multiple pollutants are chosen where over-lapping
confidence intervals can over complicate plots.

120

15 The timeVariation function

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

ref.y A list with details of the horizontal lines to be added representing refer-
ence line(s). For example, ref.y = list(h = 50, lty = 5)will add
a dashed horizontal line at 50. Several lines can be plotted e.g. ref.y =

list(h = c(50, 100), lty = c(1, 5), col = c("green", "blue")).
Seepanel.abline in thelatticepackage for more details on adding/con-
trolling lines.

key By default timeVariation produces four plots on one page. While it is
useful to see these plots together, it is sometimes necessary just to use
one for a report. If key is TRUE, a key is added to all plots allowing the
extraction of a single plot with key. See below for an example.

key.columns Number of columns to be used in the key. With many pollutants a single
column can make to key too wide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

start.day What day of the week should the plots start on? The user can change
the start day by supplying an integer between 0 and 6. Sunday = 0, Mon-
day = 1, …For example to start the weekday plots on a Saturday, choose
start.day = 6.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

alpha The alpha transparency used for plotting confidence intervals. 0 is fully
transparent and 1 is opaque. The default is 0.4

... Other graphical parameters passed onto lattice:xyplot and cutData.
For example, in the case ofcutData the optionhemisphere = "southern".

15.3 Example of use

We apply the timeVariation function to PM10 concentrations and take the opportu-
nity to filter the data to maximise the signal from the road. The polarPlot function
described in (§8) is very useful in this respect in highlighting the conditions under
which different sources have their greatest impact. A subset of data is used filtering for
wind speeds > 3 m s−1 and wind directions from 100–270 degrees. The code used is:

The results are shown in Figure 15.1. The plot shown at the top-left shows the diurnal
variation of concentrations for all days. It shows for example that PM10 concentrations
tend to peak around 9 am. The shading shows the 95 % confidence intervals of the
mean. The plot at the top-right shows how PM10 concentrations vary by day of the week.
Here there is strong evidence that PM10 is much lower at the weekends and that there
is a significant difference compared with weekdays. It also shows that concentrations
tend to increase during the weekdays. Finally, the plot at the bottom shows both sets
of information together to provide an overview of how concentrations vary.

timeVariation is

also very useful

for other

variables such

as traffic and

meteorological

data

Note that the plot need not just consider pollutant concentrations. Other useful
variables (if available) are meteorological and traffic flow or speed data. Often, the
combination of several sets of data can be very revealing.

121

15 The timeVariation function

timeVariation(subset(mydata, ws > 3 & wd > 100 & wd < 270),

pollutant = "pm10", ylab = "pm10 (ug/m3)")

hour

P
M

10
 (

µg
 m

−3
)

20

30

40

50

60

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

PM10

hour

P
M

10
 (

µg
 m

−3
)

20

30

40

50

0 6 12 18 23

month

P
M

10
 (

µg
 m

−3
)

35

40

45

50

J F M A M J J A S O N D

weekday

P
M

10
 (

µg
 m

−3
)

30

35

40

Mon Tue Wed Thu Fri Sat Sun

mean and 95% confidence interval in mean

FIGURE 15.1 Example plot using the timeVariation function to plot PM10 concentrations at
Marylebone Road.

The subset function is extremely useful in this respect. For example, if it were
believed that a source had an effect under specific conditions; they can be isolated
with the subset function. It is also useful if it is suspected that two or more sources
are important that they can be isolated to some degree and compared. This is where
the uncertainty intervals help — they provide an indication whether the behaviour of
one source differs significantly from another.

Figure 15.2 shows the function applied to concentrations of NOx, CO, NO2 and O3
concentrations. In this case the concentrations have been normalised. The plot clearly
shows the markedly different temporal trends in concentration. For CO, there is a
very pronounced increase in concentrations during the peak pm rush hour. The other
important difference is on Sundays when CO concentrations are relatively much higher
than NOx. This is because flows of cars (mostly petrol) do not change that much by day
of the week, but flows of vans and HGVs (diesel vehicles) are much less on Sundays.
Note, however, that the monthly trend is very similar in each case — which indicates
very similar source origins. Taken together, the plots highlight that traffic emissions
dominate this site for CO and NOx, but there are important difference in how these
emissions vary by hour of day and day of week.

Also shown in the very different behaviour of O3. Because O3 reacts with NO, con-
centrations of NOx and O3 tend to be anti-correlated. Note also the clear peak in O3 in
April/May, which is due to higher northern hemispheric background concentrations in
the spring. Even at a busy roadside site in central London this influence is clear to see.

Another example is splitting the data set by time. We use the splitByDate function
to divide up the data into dates before January 2003 and after January 2003. This time
the option difference is used to highlight how NO2 concentrations have changed
over these two periods. The results are shown in Figure 15.3. There is some indication
in this plot that data after 2003 seem to show more of a double peak in the diurnal

122

15 The timeVariation function

timeVariation(mydata, pollutant = c("nox", "co", "no2", "o3"), normalise = TRUE)

hour

no
rm

al
is

ed
 le

ve
l

0.5

1.0

1.5

2.0

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

NOx CO NO2 O3

hour

no
rm

al
is

ed
 le

ve
l

0.6

0.8

1.0

1.2

1.4

0 6 12 18 23

month

no
rm

al
is

ed
 le

ve
l

0.6

0.8

1.0

1.2

1.4

1.6

J F M A M J J A S O N D

weekday

no
rm

al
is

ed
 le

ve
l

0.8

0.9

1.0

1.1

1.2

1.3

Mon Tue Wed Thu Fri Sat Sun

mean and 95% confidence interval in mean

FIGURE 15.2 Example plot using the timeVariation function to plot NOx, CO, NO2 and O3
concentrations at Marylebone Road. In this plot, the concentrations are normalised.

plots; particularly in the morning rush hour. Also, the difference line does more clearly
highlight a more substantial change over weekdays and weekends. Given that cars
are approximately constant at this site each day, the change may indicate a change in
vehicle emissions from other vehicle types. Given that it is known that primary NO2
emissions are known to have increased sharply from the beginning of 2003 onwards,
this perhaps provides clues as to the principal cause.

In the next example it is shown how to compare one subset of data of interest with
another. Again, there can be many reasons for wanting to do this and perhaps the
data set at Marylebone Road is not the most interesting to consider. Nevertheless, the
code below shows how to approach such a problem. The scenario would be that one
is interested in a specific set of conditions and it would be useful to compare that set,
with another set. A good example would be from an analysis using the polarPlot

function where a ‘feature’ of interest has been identified—maybe an indication of a
different source. But does this potentially different source behave in a different way in
terms of temporal variation? If it does, then maybe that provides evidence to support
that it is a different source. In a wider context, this approach could be used in many
different ways depending on available data. A good example is the analysis of model
output where many diagnostic meteorological data are available. This is an area that
will be developed.

The approach here is to first make a new variable called ‘feature’ and fill it with the
value ‘other’. A subset of data is defined and the associated locations in the data frame
identified. The subset of data is then used to update the ‘feature’ field with a new
description. This approach could be extended to some quite complex situations.

There are a couple of things to note in Figure 15.2. There seems to be evidence that
for easterly winds > 4 m s−1 that concentrations of SO2 are lower at night. Also, there
is some evidence that concentrations for these conditions are also lower at weekends.
This might reflect that SO2 concentrations for these conditions tend to be dominated

123

15 The timeVariation function

split data into two periods (see Utlities section for more details)

mydata <- splitByDate(mydata, dates= "1/1/2003",

labels = c("before Jan. 2003", "After Jan. 2003"))

timeVariation(mydata, pollutant = "no2", group = "split.by", difference = TRUE)

hour

N
O

2

0

20

40

60

80

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

before Jan. 2003 After Jan. 2003 After Jan. 2003 − before Jan. 2003

hour

N
O

2

20

40

60

0 6 12 18 23

month

N
O

2

0

10

20

30

40

50

60

J F M A M J J A S O N D

weekday
N

O
2

10

20

30

40

50

60

Mon Tue Wed Thu Fri Sat Sun

mean and 95% confidence interval in mean

FIGURE 15.3 Example plot using the timeVariation function to plot NO2 concentrations at
Marylebone Road. In this plot, the concentrations are shown before and after January 2003.

by tall stack emissions that have different activities to road transport sources. This
technique will be returned to with different data sets in future.

By default timeVariation shows the mean variation in different temporal com-
ponnets and the 95% confidence interval in the mean. However, it is also possi-
ble to show how the data are distributed by using a different option for statistic.
When statistic = "median" the median line is shown together with the 25/75th
and 5/95th quantile values. Users can control the quantile values shown be setting the
conf.int. For example, conf.int = c(0.25, 0.99)will show the median, 25/75th
and 1/99th quantile values. The statistic = "median" option is therefore very use-
ful for showing how the data are distributed — somewhat similar to a box and whisker
plot. Note that it is expected that only one pollutant should be shown when statistic
= "median" is used due to potential over-plotting; although the function will display
several species of required. An example is shown in Figure 15.5 for PM10 concentrations.

124

15 The timeVariation function

make a field called "site" and fill: make all values = "other"

mydata$feature <- "other"

now find which indexes correspond to easterly conditions > 4m/s ws

id <- which(with(mydata, ws > 4 & wd > 0 & wd <= 180))

use the ids to update the site column

there are now two values in site: "other" and "easterly"

mydata$feature[id] <- "easterly"

timeVariation(mydata, pollutant ="so2", group = "feature", ylab = "so2 (ppb)",

difference = TRUE)

hour

S
O

2
(p

pb
)

−2

0

2

4

6

8

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

easterly other other − easterly

hour

S
O

2
(p

pb
)

0

2

4

6

0 6 12 18 23

month

S
O

2
(p

pb
)

−2

0

2

4

6

J F M A M J J A S O N D

weekday

S
O

2
(p

pb
)

0

2

4

6

Mon Tue Wed Thu Fri Sat Sun

mean and 95% confidence interval in mean

FIGURE 15.4 Example plot using the timeVariation function to plot SO2 concentrations at
Marylebone Road. In this plot, the concentrations are shown for a subset of easterly conditions
and everything else. Note that the uncertainty in the mean values for easterly winds is greater
than ‘other’. This is mostly because the sample size is much lower for ‘easterly’ compared with
‘other’.

125

15 The timeVariation function

timeVariation(mydata, pollutant = "pm10", statistic = "median",

col = "firebrick")

hour

P
M

10

20

40

60

80

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

PM10

hour

P
M

10

20

40

60

0 6 12 18 23

month

P
M

10

10

20

30

40

50

60

70

J F M A M J J A S O N D

weekday

P
M

10

10

20

30

40

50

60

Mon Tue Wed Thu Fri Sat Sun

median, 25/75 and 5/95th quantiles

FIGURE 15.5 Example plot using the timeVariation function to show the variation in the
median, 25/75th and 5/95th quantile values for PM10. The shading shows the extent to the
25/75th and 5/95th quantiles.

126

15 The timeVariation function

15.4 Output

The timeVariation function produces several outputs that can be used for further
analysis or plotting. It is necessary to read the output into a variable for further pro-
cessing. The code below shows the different objects that are returned and the code
shows how to access them.

myOutput <- timeVariation(mydata, pollutant = "so2")

show the first part of the day/hour variation

note that value = mean, and Upper/Lower the 95% confid. intervals

head(myOutput$data$day.hour)

A tibble: 6 x 8

Groups: ci [1]

variable wkday hour default Mean Lower Upper ci

<fct> <ord> <int> <fct> <dbl> <dbl> <dbl> <dbl>

1 so2 Monday 0 01 January 1998 to 23 June 2~ 2.93 2.67 3.25 0.95

2 so2 Tuesday 0 01 January 1998 to 23 June 2~ 3.21 2.98 3.51 0.95

3 so2 Wednesday 0 01 January 1998 to 23 June 2~ 3.35 3.10 3.61 0.95

4 so2 Thursday 0 01 January 1998 to 23 June 2~ 3.22 2.91 3.42 0.95

5 so2 Friday 0 01 January 1998 to 23 June 2~ 3.64 3.35 3.89 0.95

6 so2 Saturday 0 01 January 1998 to 23 June 2~ 4.25 3.86 4.62 0.95

can make a new data frame of this data e.g.

day.hour <- myOutput$data$day.hour

head(day.hour)

A tibble: 6 x 8

Groups: ci [1]

variable wkday hour default Mean Lower Upper ci

<fct> <ord> <int> <fct> <dbl> <dbl> <dbl> <dbl>

1 so2 Monday 0 01 January 1998 to 23 June 2~ 2.93 2.67 3.25 0.95

2 so2 Tuesday 0 01 January 1998 to 23 June 2~ 3.21 2.98 3.51 0.95

3 so2 Wednesday 0 01 January 1998 to 23 June 2~ 3.35 3.10 3.61 0.95

4 so2 Thursday 0 01 January 1998 to 23 June 2~ 3.22 2.91 3.42 0.95

5 so2 Friday 0 01 January 1998 to 23 June 2~ 3.64 3.35 3.89 0.95

6 so2 Saturday 0 01 January 1998 to 23 June 2~ 4.25 3.86 4.62 0.95

All the numerical results are given by:

myOutput$data$day.hour ## are the weekday and hour results

myOutput$data$hour ## are the diurnal results

myOutput$data$day ## are the weekday results

myOutput$data$month ## are the monthly results

It is also possible to plot the individual plots that make up the (four) plots produced
by timeVariation:

just the diurnal variation

plot(myOutput, subset = "hour")

day and hour

plot(myOutput, subset = "day.hour")

weekday variation

plot(myOutput, subset = "day")

monthly variation

plot(myOutput, subset = "month")

127

16 The scatterPlot function

16 The scatterPlot function

16.1 Purpose

Scatter plots are extremely useful and a very commonly used analysis technique for
considering how variables relate to one another. R does of course have many capabili-
ties for plotting data in this way. However, it can be tricky to add linear relationships,
or split scatter plots by levels of other variables etc. The purpose of the scatterPlot
function is to make it straightforward to consider how variables are related to one
another in a way consistent with other openair functions. We have added several ca-
pabilities that can be used just by setting different options, some of which are shown
below.

• A smooth fit is automatically added to help reveal the underlying relationship
between two variables together with the estimated 95% confidence intervals of
the fit. This is in general an extremely useful thing to do because it helps to show
the (possibly) non-linear relationship between variables in a very robust way —
or indeed whether the relationship is linear.

• It is easy to add a linear regression line. The resulting equation is shown on the
plot together with the R2 value.

• For large data sets there is the possibility to ‘bin’ the data using hexagonal bin-
ning or kernel density estimates. This approach is very useful when there is
considerable over-plotting.

• It is easy to show how two variables are related to one another dependent on
levels of a third variable. This capability is very useful for exploring how different
variables depend on one another and can help reveal the underlying important
relationships.

• A plot of two variables can be colour-coded by a continuous colour scale of a
third variable.

• It can handle date/time x-axis formats to provide an alternative way of showing
time series, which again can be colour-coded by a third variable.

The scatterPlot function isn’t really specific to atmospheric sciences, in the same
way as other plots. It is more a function for convenience, written in a style that is con-
sistent with other openair functions. Nevertheless, along with the timePlot function
they do form an important part of openair because of the usefulness of understanding
show variables relate to one another. Furthermore, there are many options to make it
easy to explore data in an interactive way without worrying about processing data or
formatting plots.

16.2 Options available

mydata A data frame containing at least two numeric variables to plot.

x Name of the x-variable to plot. Note that x can be a date field or a factor.
For example, x can be one of the openair built in types such as "year"
or "season".

y Name of the numeric y-variable to plot.

128

16 The scatterPlot function

z Name of the numeric z-variable to plot for method = "scatter" or
method = "level". Note that for method = "scatter" points will be
coloured according to a continuous colour scale, whereas for method =

"level" the surface is coloured.

method Methods include “scatter” (conventional scatter plot), “hexbin” (hexag-
onal binning using the hexbin package). “level” for a binned or smooth
surface plot and “density” (2D kernel density estimates).

group The grouping variable to use, if any. Setting this to a variable in the data
frame has the effect of plotting several series in the same panel using
different symbols/colours etc. If set to a variable that is a character or
factor, those categories or factor levels will be used directly. If set to a
numeric variable, it will split that variable in to quantiles.

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”,
“day”, “DSTday”, “week”, “month”, “quarter” or “year”. For much in-
creased flexibility a number can precede these options followed by a
space. For example, a timeAverage of 2 months would be period = "2

month". See function timeAverage for further details on this. This op-
tion se useful as one method by which the number of points plotted is
reduced i.e. by choosing a longer averaging time.

data.thresh The data capture threshold to use (the data using avg.time. A value
of zero means that all available data will be used in a particular period
regardless if of the number of values available. Conversely, a value of
100 will mean that all data will need to be present for the average to be
calculated, else it is recorded as NA. Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean.
Can be one of ”mean”, ”max”, ”min”, ”median”, ”frequency”, ”sd”, ”per-
centile”. Note that ”sd” is the standard deviation and ”frequency” is the
number (frequency) of valid records in the period. ”percentile” is the
percentile level (using the ”percentile” option - see below. Not used if
avg.time = "default".

percentile The percentile level in % used when statistic = "percentile" and
when aggregating the data with avg.time. The default is 95. Not used if
avg.time = "default".

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

129

16 The scatterPlot function

smooth A smooth line is fitted to the data if TRUE; optionally with 95% confidence
intervals shown. For method = "level" a smooth surface will be fitted
to binned data.

spline A smooth spline is fitted to the data if TRUE. This is particularly useful
when there are fewer data points or when a connection line between a
sequence of points is required.

linear A linear model is fitted to the data ifTRUE; optionally with 95% confidence
intervals shown. The equation of the line and R2 value is also shown.

ci Should the confidence intervals for the smooth/linear fit be shown?

mod.line If TRUE three lines are added to the scatter plot to help inform model
evaluation. The 1:1 line is solid and the 1:0.5 and 1:2 lines are dashed.
Together these lines help show how close a group of points are to a 1:1 re-
lationship and also show the points that are within a factor of two (FAC2).
mod.line is appropriately transformed when x or y axes are on a log
scale.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

plot.type lattice plot type. Can be “p” (points — default), “l” (lines) or “b” (lines
and points).

key Should a key be drawn? The default is TRUE.

key.title The title of the key (if used).

key.columns Number of columns to be used in the key. With many pollutants a single
column can make to key too wide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Allowed arguments cur-
rently include “top”, “right”, “bottom” and “left”.

strip Should a strip be drawn? The default is TRUE.

log.x Should the x-axis appear on a log scale? The default is FALSE. If TRUE
a well-formatted log10 scale is used. This can be useful for checking
linearity once logged.

log.y Should the y-axis appear on a log scale? The default is FALSE. If TRUE
a well-formatted log10 scale is used. This can be useful for checking
linearity once logged.

x.inc The x-interval to be used for binning data when method = "level".

y.inc The y-interval to be used for binning data when method = "level".

limits For method = "level" the function does its best to choose sensible
limits automatically. However, there are circumstances when the user
will wish to set different ones. The limits are set in the form c(lower,

upper), so limits = c(0, 100) would force the plot limits to span
0-100.

130

16 The scatterPlot function

windflow This option allows a scatter plot to show the wind speed/direction shows
as an arrow. The option is a list e.g. windflow = list(col = "grey",

lwd = 2, scale = 0.1). This option requires wind speed (ws) and
wind direction (wd) to be available.
The maximum length of the arrow plotted is a fraction of the plot dimen-
sion with the longest arrow being scale of the plot x-y dimension. Note,
if the plot size is adjusted manually by the user it should be re-plotted
to ensure the correct wind angle. The list may contain other options to
panel.arrows in the lattice package. Other useful options include
length, which controls the length of the arrow head and angle, which
controls the angle of the arrow head.
This option works best where there are not too many data to ensure over-
plotting does not become a problem.

y.relation This determines how the y-axis scale is plotted. “same” ensures all panels
use the same scale and “free” will use panel-specific scales. The latter is
a useful setting when plotting data with very different values.

x.relation This determines how the x-axis scale is plotted. “same” ensures all panels
use the same scale and “free” will use panel-specific scales. The latter is
a useful setting when plotting data with very different values.

ref.x See ref.y for details.

ref.y A list with details of the horizontal lines to be added representing refer-
ence line(s). For example, ref.y = list(h = 50, lty = 5)will add
a dashed horizontal line at 50. Several lines can be plotted e.g. ref.y =

list(h = c(50, 100), lty = c(1, 5), col = c("green", "blue")).
Seepanel.abline in thelatticepackage for more details on adding/con-
trolling lines.

k Smoothing parameter supplied to gam for fitting a smooth surface when
method = "level".

dist When plotting smooth surfaces (method = "level"andsmooth = TRUE,
dist controls how far from the original data the predictions should be
made. See exclude.too.far from the mgcv package. Data are first
transformed to a unit square. Values should be between 0 and 1.

map Should a base map be drawn? This option is under development.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters are passed onto cutData and an appropriate
lattice plot function (xyplot, levelplot or hexbinplot depending
on method). For example, scatterPlot passes the option hemisphere

= "southern" on to cutData to provide southern (rather than default
northern) hemisphere handling of type = "season". Similarly, for the
default case method = "scatter" common axis and title labelling op-
tions (such as xlab, ylab, main) are passed to xyplot via quickText to
handle routine formatting. Other common graphical parameters, e.g.

131

16 The scatterPlot function

data2003 <- selectByDate(mydata, year = 2003)

scatterPlot(data2003, x = "nox", y = "no2")

NOx

N
O

2

0

50

100

150

200

0 200 400 600

●
●●

●●
●

●
●
●

●●

●
●●

●

●
●

●

●●●

●●●

●

●●
●

●
●

● ●

●
●●●

●●

●
●

●●●
●

●
●

●
●

●●
●●●

●

●

●
●

●
●

●●●
●●
●●

●
●●●●●●●

●●●
●
●●●●

●●●
●●
●●●●

●●●●
●●●●●●

●
●

●
●●

●

●
●
●●●●●●●●●●

●●●●●●
●

●
●
●●

●●
●
●
●
●●●●●●●●

●

●●●
●●

●

●
●

●

●

●
●

●●●
●

●●●
●

●●●
●●●

●
●●●●●●●

●
●●●●●●●●

●
●●

●●●
●

●
●●●
●●●●
●
●

●
●●●●

●
●

●●●
●●

●●

●
●●●●
●

●
●

●●●●
●●●

●●

●●●●●
●●●

●
●●

●●
●●●
●

● ●●

●● ●●

●●●

●
●●

● ●

●●

● ●●
●

●●
●●

●
●

●
●

●●
●●

●●●
●

●

●

●●

●●●

●●● ●

●

●

●
●

●
●●

●
●

●
●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●
●●

●

●

● ●

●

● ●

●
●

●

●

●
●

●
●●

●
●

●

●
●●
●

●

●

●●

●

●
●

●
● ●

●

●
●

●
●●

●●

●

●
●●●●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●●
●

●
●

●

●
●

●
●
●

●●●
●

●●
●
●
●●

●
●

●●
●●

●
●●

●
●●

●

●
●

●

●
● ●●

●
●

●
●

●
●

●●
●

●

●

●●
●
●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●●●

●

●

●
●

●
●

●

●
●

●

●

●● ● ●

●

●●●

●

●

●
●

●●
●

●
●

●●
●●

●

●●
●

●

●

●●

●
●

●
●●●●●●

●

●●
●

●
●
●
●●

●●

●
●

● ●
●

●

●●

●

●

●●
●

●

●
●

●

●
●●● ●

●

●

●●

●

●

●
●
●

●

●●●
●
●

● ●

●
●

●
●

●

●●●
●

●

●

●●
●●

●●
●●

●●●
●

●
●

●

●●

●●●●

●●
●●

●
●
●

●
●●

●●●
●

●

●

●●●

●

●
●

●●
●

●
●●

●
●●

●
●

●
●●
●
●

●

●
●

●

●
●
●

● ●
●
●●

●

●

●●

●
●

●
●●●●●●
●●●
●
●

●

●
●●
●●●●●

●●

●
●●●

●

●●

●
●
●●●

●
●●

●

●

●
●

●
●
●●●●
●●●
●●

●
●

●●
●●

●

●●

●●●

●
●

●

●

●

●

●

●●
●●

●

● ●

●
●

●

●
●●

●

●
●

●
●

●
●●

●
●

●●●
●●
●

●●
●

●
●
●

●

●●●●
●

●●
●

●●
●

●
●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
● ●●

●
●●●

● ●

●

●

●●
●●

●

●

●
●●●

●
●●

●
●●

●
●
●

●●

●

●

●

●
●●

●

●

●●

●
●

●●

●

●●
●

●

●
●

●● ●

●

●
●

●
● ●
●●

●●

●●

●

●●

●●●

●●

●●
●

●

●

●
● ●●

●

●●

●

●● ●

●●

●●
●●●

●

●●●●

●

●● ●
●

●●
●
●
●

●
●
●

●●
●● ●

●

●●
●

●●

●●
●

●
●
●

●

●●
●
●

●●●●●●●●●●●●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●
●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●
●●

●

●
●

●●
●

●●

●

●

●●●●

●

●●

●●

●

●
●●

●

●
●●
●

●
●

●●

●

●

●

●

●
●

●

●
●●
●●●●●●

●
●

●●
●

●●●●
●

●
●

●
●
●●●●●●●●●●●

●●●
●

●
●

●
●

●●●●●●

●
●●

●
●

●
●●●

●
●●● ●

●
●
●
●
●●
●

●●●●

●●

●●

●
●
●

●●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●
●

●●
●

●
● ●●●

● ●

●
●
●●●

●●●

●

●
●
●

●

●●

●●
●

●

●●
●

●

●
●

●

●

●
●

●

● ●
● ●

●●
●

●

●●
●●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●●●
●●

●●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●●●●
●

●

●●●
●
●●●

●
●

●

●●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●●●

● ●
●

●
●

●

●

●●

● ●●●

●
●

●●
●

●●
●●

●
●

●

●●

●

●
●●●
●●

●●

●
● ●

●
●

●
●

●●

● ●

●

●●●

●●

●

●

●

●●

●

●

●
●

●

●

●
●●● ● ●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●●
●●
●

●●

● ●

●

●

●

●

●

●
●● ●●●

●
●●

●●●
●

●

●●
●

●
●● ●

●

●●
●

●
● ●

●
●
●●

●
●●

●●●●

●●●
●●
●●
●
●

●

●

●

●●
●●

●
●● ●

●
●

●
●

●
●

● ●●
●●

●

●

●● ●●

●
●●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●●
●●

● ●
●

●●

●●
●●
●●

●

●
●

●
●

●

●●

●
●

●

●

●
●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●●
●●

●

●
●

●●
●

●
●

●

●

●

●

●●

●●●
●●

●

●
●
●

●

● ●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●
●●●

●
●

●●

●●
●●●
●●

●

●

●
●●

●●
●

●

●

●●●
●

●

●
●

●●

●
●

●●●
●

●●

●

●
●●●

●

●
●●

●
●

●

●
● ●

●●
●●

●

●
●

●
● ●

●

●
●●

●

●

●●

●
●

●●●

●

●

●●●●
●●

●
●

●●●●●●●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●●●●
●●●

●●●
●

●

● ●
●

●

●●
●●

●
●

●

●
●

●
●

●
●

●● ●● ●●

●

●●
●
●

●
●●

●
●

●

●●
●●

●
●
●

●

●

●●
●

●

●●●
●

●●●
●

●
●

●
●●●

●

●
●●●●

●
●

●
●●

●●
●●

●●

●●●

●●
●

●
●

●●

●
●

●●●
●

●
●

●
●

●●
●

●

●●

●

●●
●

●
●

●
●

●

●●●●●

●

●

●

●
●

●●●
●
●●● ●

●

●
●●

●●

●
●

●●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

●●●
●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●●

●
●

●

●

●●
●●●●

●●●●●
●

●

●
●

●
●●●

●

●

●

●

●

●●
●

●
●
●

●
●●●●

●
●

●●●

●

●

●

●

●
●

●

●●

●●

●

●●
●●

●

●●

●

●
●

●

●●

●
●●

●●●

●

●●●

●●
●●●

●

●

●
●

●

●

●●

●
● ●

●
●
●

●●
● ●

●●
●●●●● ●●

●
●
●

●

●
●

●
●

●

●

●
●

●
●

●●●
●●● ●

●

●●

●●
●

●●

● ●●
●

● ●

●

●
●

●

●

●●
●
●

●

●

●●
●●

●

● ● ●

●
●

●
●
●

●●

●

●
●

●
●

●

●
●●
●●

●●●●●●
●●●

●●
●●●●

●●
●

●
●●●●●●●●
●●
●●
●

●

●

●
●

●●

●

●●
●

●

●

●●

●●

●

●
●

●
●●

●

●
●
●●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●
●

●

●●

●

●●
●

●
●●

●
●

●

●
●

●

●

●

●
●●
●●

●●●●
●
●●●
●●●

●●
●●
●

●●●●
●

●●●
●●●●
●

●●●
●●

●●●

●

●●

●

●●

●
●
●

●●●●●●●●
●●

●
●
●●

●●●
●

●

●●●●●●
●
●●●●●
●●●

●
●

●●
●●●●●
●●
●
●●
●●●●●
●●●●●●●●●●

●●
●

●
●
●

●●
●
●

●

●●

●

●●
●●

●●
●

●

●
●●●

● ●
●

●

●
●

●

●

●

●●●

●

●

●
●

●

●
●

●
●●
●●●

●
●●●

●

●

●

●

●
●
●

●
● ●●

●●●

●●
●
●
●

●

●
●

●
●
●

●●

●

●●●●
●●

●●
●●●

●●●
●

●

●

●

●
●

●

● ●

●

●●

●●

●●

●●
●●

●
●

●●
●

●
●

●●
●

●
●

●

●

●
●

●
●
●

●

●●
●

●

●
●

●

●
● ●●

●●

●
●●
●●
●●

●
●●

●
●

●
●

●

●
●

● ●
●

●

●
●

●

●
●●●
●●

●

●●

●

●●
● ●

●
●●●●

● ●

●

●

●
●

●
●

●●●

●

●● ●
●

●
●

● ●
●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●●
●●

●
●

●
● ●

●●

●

●●

●

●●
●

●

●

●●●

●
●●●●●
●
●
●●

●
●●

●●
●

●●
●

●
●●●●●●●●●●●●
●●
●●●
●●

●●●●●●●●●●●●●●●●
●●

●●●
●

●●●●

●

●
●

●●●●
●●

●●
●●●

●●

●
●●●●●●

●●
●

●
●

●●●

●

●
●

●●

●

●
●

●

●

●

●●

●

●●

●●

●

●
●

●

●
●

●

●
●●

●●
●

●

●●●●

●

● ●

●●
●

●
●
●●
●

●
●

●●●
●

●
●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●● ●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●●●

●
●●

●
●

●

●●

●

●
●

●

●
●●
● ●
●

●

●

●
●

●

●
●

●●●
●
●

●
●

●●
●

●

●

●

●
●

●
●●

●
●●

●

●

●
●●●

●

●
●

●
●

●

●●

●●
●●●●

●●

●
●

●

●

●●●●

●

●

●● ●

●

●●

●
●

●

●
●

●

●

●
●

●●
●

●
●

●●

●

●

●●

●● ●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●●
●

●

●●

●

●
●●●

●

● ●
●

●

●
●

●

●
●

●

●
●●

●
●●

●

●●● ●

●

●●

●●

●

● ●
●

●

●●●●●●
●

●
●

●

●
●

●
●●

●
●

●●●●
●●● ●

●
●●

●
●●●●

●
●

●●●●
●●●

●

●

●
●

●

●●

●

●

●

●
●●

●

●●●
●
●

●●●●

●

●

●

●●

● ●

●
●●

●●

●
●

●

●
●

●●

●

●

●●●

●
●

●

●
●●

●

●

●

●
●

●●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●●

●
●

●
●●●●

●
●●
●●

●
●

●●●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●● ● ●●●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●
●●

●
●

●

●

●

●

●● ●●
●

●
●●●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●●

●

●●
●

●

●

●

●●

●●

●●

●

●●

●
●●
●

●

●

●

●

●● ●

●●●●●

●

●
●

●

●
●

●

●

●●
●●

●●

●

●

●
●

●
●●

●

●

●

●●
●

●●
●

●●

●
●●

●

●
●
●

●
●

●

●●
●●

●
●●

●●
●●
●●●

● ●
●●

●●
●●

●●
●●
●●●●
●
●

●●
●●

●●
●●●

●

●●●
●

●

●

●

●
●

●●

● ●

●

●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●
●

●

●

●
●●
●

●

●●

●

●

●

●

●

●●
●

●
●●

●
● ●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

● ●●
●●

●

●
●
●
●

●

●

●
●

●●

●

●●●
●●●

●

●

●

●

●●

●

●●●●

●
●

●●●

●

●
●

●

●●
●●
●

●

●●
●●●

●●●●
●●

●
●●
●
●●
●

●

●●

●
●

●

●

●●●

●●
●

● ●●
●●

●

●●●

●
●●●
●●

●
●

●●●
●

●

●

●●
●

●

●
●

●
●
●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●
● ●●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●●●●
●

●
●●

●

●
●

●●

●●

●
●

●

●

●●

●

●

●
●●●●

●
●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●●
●
●●

●

●
●●

●

●

●
●

●

●●
●●
●●●

●●

●
●

●●

●

●●
●
●●●

●

●

●
●

●

●●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●●

●

●

●●

●●
●

●

●

●

●
●

●
●

●●

● ●

●●

●

●

●

●
●

●

●
●● ●

●

●●●
●

●

●

●●

●
●

●

●

●

●

●

●
●●●

●●●

●
●●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●
●●
●

●

●

●

●

●

●●
●

●●

●

●●●

●●
●

●
●

●

●
●●

●

● ●●

● ●

●●
●

●

●●

●

●
●●

●●●

●
●

●●●

●●●

●●

●

●

●

●●●●

●

●
●●

●●
●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●●

●●
●

●

●

●

●

●

●
●

●

●●

●●
●
●●●

●
●● ●●

●
●
●●

●

● ●

●

●
● ●

●

●

●●●
●

●

●●
●●

●
●

●●●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●
●
●

●

●
●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●
●

●

●

●●

●

●●
●
●

●
●

●●

●

●

●●●
●●●●

●●

●
●●

●
●
●

●
●
●
●●

●

●
●●●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●●
●

●

●

●●

●

●

●
●

●
●●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●●●

●

● ●

●●

●●

●●

●

●

● ●

●
●●

●

●●

●
●

●

●●●

●

●
●

●
●

●
●

● ●

●

●

●●

●

●

●

●●●

●

●

●

●● ●
●●

●
●

●

●●
●
●

●

●
●●
●

●
●

●
●●
●
●

●●
●●

●●●●●
●●

●

●

●

●

●
●●●
●

●
●

●

●●●

●

●●●
●
●

●

●

●

●●
●

●
●

●●
●

●

●

●
●
●

●●●

●●
●

●

●

●

●

●

●●
●●

●

●●●●
●

●
●
●●

●

●
●

●●●

●

●
●

●
●●●
●

●

●●●●●●

●
●

●●
●

●
●

●

●

●

●
●
●

●

●

●●●

●

●●

●

●
●●

●●

●
●

●
●●●●

●

●
●

●●

●
●●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●

●

●

●

●

●●

●●

●●
●●●

●
●

●●●●
●●●●●●●

●●

●●
●
●

●

●
●●

●

●● ●

●
●

●
●

●
●●●
●●●

●
●●
●

●
●

●
●

●

●●

●●●

●●
●

● ●

●
●
●

●●●
●

●

●

●●

●
●

●●

●

●
●●●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●●●
●●

●

●●●
●●

●
●●

●
●

●

●

●
●

●●●
●●

●●

●

●
●

●
●
●

●

●
●

●●

●
●●●

●
●

●

●●●●

●

●●●

●

●
●

●●
●

●
●

●●

●
●

●●

●
●
●●

●

●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●
●●●

●
●●●●

●●●●

●●
●●●
●●●
●

●

●

●

●●
●
●

●
●

●

●

●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●
●●

●

●
●●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●●●

●●

●
●●

●
●

●

●

●
●

●
●

●

●
●
●

●

●

●●●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●●●

●
●

●

●
●●●●

●

●●
●

●●
●●
●
●●●●

●●●
●

●
●

●

●

●

●
●

●

●
●

●

●●●
●●
●

●

●

●●
●●●

●
●
●

●
●●
●

●

●●●

●
●

●●
●

●

●

●
●●●
●

●

●

●●
●
●●

●●●
●

●
●

●●●
●

●
●

●
●●●
●

●
●

●

●
●

●

●

●
●
●

●

●
●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●
●●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●●
●●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●

●
●●

●

●
●

●
●

●●

●

●

●
●

●●

●

●

●
●●
●

●●
●●

●
●●

●
●
●

●
●
●

●●

●●●●●●
●

● ●●
●

●

●
●

●

●

●
●

●
●

●

●●

●
●●●●●●●

●
●

●
●

●

●

●

●

●●
●
●

●●●●
●●

●●

●

●
●

●
● ●●

●●

●●●

●●●
●

●

●

●●●
●

●●
●

●

●

●●●

●

●

●

●●

●●

●
●

●

●

●

●
●●

●
●

●

●

●
●●●●
●

●●
●●

●
●●

●●

●

●

●

●●
●●
●

●
●

●●●●
●

●
●

●

●●

●●

●

●

●

●

●

●●

●●●●●●●●
●●●●

●●●

●

●●

●

●
●●

●

●

●●

●

●●
●

●●
●

●●
●
●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●
●
●●
●●
●
●●

●
●

●

●●●●
●●●
●

●

●●●●●
●●●
●●

●

●
●
●●●
●
●

●
●●●●●●●●●●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●●

●

●
●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●●●●
●

●● ●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●
●

●
●●

●
●

●
●●●●●

●●●●●●

●●

●

●
●

●●
●●
●

● ●●

●●●●
●●●

●

●
●

●
●

●

●●●
●●

●●
●●●●●●

●●

●
●

●
●●
●

●●

●●●●●●
●

●●
●
●

●

●
●●
●
●

●
●
●

●

●●●
●

●

●●●

●●
●

●
●●

●

●

●

●●

●
●●

●

●
●

●
●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●●●

●
●●

●●

●●●

●
●

●●

●

●

●
●

●●●
●●
●●
●●

●
●

●
●

●
●
●

●
●●
●

●
●●
●

●
●●●
●

●
●

●
●

●●●

●
●

●●

●

●

●●
●
●●●

●
●●

●●
●
●●

●
●

●●
●●●●●

●●●

●●
●●

●
●

●
●

●●●●

●

●

●
●

●
●

●

●●●

●●
●
●
●

●

●

●

●

●

●

● ●●
●

●

●

●●

●

●
●

●

●

●●
●

●
●●●●

● ●
●

●

●
●

●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●

●
●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●

●
●

●
●

●

●

●

● ●

●●

●●
●

●●

●

●
●●

●
●

●●

●
●●

●

●

●
●

●
●

●

●●●

●

●

●
●●●

●
●●

●●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

●

●

●
●

●

●
●

●●
●●

●●
●●●
●●●

●

●

●●

●

●

●
●

●

●
●

●
●
●●

●

●

●

●●

●
●

●

●●●●
●

●
●
●

●
●

●
●●

●

●●

●
●

●
●

●

●
●●

●●●●

●
●
●

●●

●
●

●●

●●

●●

●
●

●

●

●

●

●

● ●
●●●●●●

●

●

●
●

●

●●
●●

●

●
●

●

●

●●
●

●
●
●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●●●
●

●

● ●●

●

● ●

●
●

●

●

●

●

●●●

●

●
●

●●●
●

●

●
●

●
●●

●
●●

●

●

●●
●

●

●

●

●●

● ●
●

●
●●

●

●●
●

●

●
●

●

●●

●

●
●
●

●

●

●●
●

●

●●●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●●●

●●
●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●●
●●

●

●
●
●
●
●

●

●●
●

●
●

● ●
●

●●
●●

●

●
●●●●

●

●
●

●●●

●
●

●
●

●

●●
●●

●●
●

●
●
●
●●

●

●

●

●

●●●

●●●
●

●●

●
●●

●
●

●●●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●
●

●●

●
●

●●●

●

●

●
●

●●

●

●

●

●●

●●
●

●
●

●
●●

●

●●● ●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●●
●

●
●●●●●
●

●●●●●●

●●

●
●

●●
●

●
●●

●

●
●●●
●●

●
●●
●●●●
●

●●
●●

●●

●
●●●

●

● ●●
●●

●

●
●

●
●

●
●

●

●
●●

●

●

●
●

●●

●
●

●●

●
●

●

●
●●

●
● ●

●

●

●

●
●●●

●

●
● ●

●

●

●

●
●●●

●

●●
●●

●●

●

●

●

●

●●●
●

●●●●●
●●●●

●
●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●●●

●
●●●
●●●●
●
●●●●●

●

●
●●

●●
●●●

●

●●●●●

●●
●

●
●

●●
●●●●●●●●●●●●●

●●
●●●●
●●●

●
●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●

●●●

●

●

●
●
●●●

●
●
●

●

●

●

●
●

●

●
●●●
●●
●

●●●

●
●

●●●●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●●●●
●●

●
●

●

●

●

●

●
●
●●

●
●

●
●

●

●

●
●

●

●
●

●

●
●
●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
● ●

●●●●●
●

●

●●●●●

●
●●

●
●

●

●●
●

●

●●●
●

●

●●

●

●

●

●

●
●
●

●●
●

●
●

●
● ●
●

●

●●
●
●
●

●
●

●

●

●●
● ●
●

●

●

●

●●
●

●
●●

●
●●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●●●●●
●

●
●

●

●
●

● ●
●
●

●●

●
●
●

●●●●●●●●●

●
●●●

●
●●●

●

●
●
●
●

●
●●●
●●●

●●● ●●●●●●
●●

●
●

●

●

●
●
●●

●●●●●●●●●●●●

●●
●●
●●●

●●
●
●

●●●●●●●

●
●●

●
●●●
●●
●●●●●

●●
●●

●●●
●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●●

●
●

●
●●

●

●●
●●

●●●
●●

●●
●●●●●●
●●●

●
●

●●●

●

●●●●●

●

●

●

●
●

●

●

●●●●
●●●
●●●
●●
●

●●

●●●

●

●

●
●●

●

●●

●
●

●
●

●●

●

●

● ●

●
●

●
●

●●●
●●

●●●●●●
●●●

●

●
●●●

●●
●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●●

●●●●

●

●

●

●

●●
●●

●

●
●●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●
●

●●●
●

●
●

●

●

●

● ●

●

●
●●●

●

●

●

●

●
●

●
●

● ●

●
●

●●
●
●

●
●

●●●●●●●
●

●●●●
●
●

●●
●

●

●

●

●●●

●
●

●

●
●

●

●●●
●●

●●
●

●
●

●
●
●●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●●
●●

●

●●

●
●

●
●

●

●

●

●●

●

●

● ●

●●

●●●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●●
●

●
●

●●●
●

●

●

●

●

●
●●

●●●

●
●

●
●●

●

●

●
●●

●●●●

●
●

●
●●

●●

●
●

●
●

●
●●

●
●●

●●
●●

●
●

●
●

●
●

●
●

●●
●●

●
●

●
●
●

●

●
●●●

●●●
●

●

●

●

●

●

●

●

●

●●
●● ●

●
●

●
●

●
●

●
●

●●
●●

●

●

●●●

●

● ●

●●
●

●

●

●

●●●●
●
●

●
●●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●
●

●●●
●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●
●●

●

●●

●●●

● ●

●
●

●

●●●
●●

●
●
●●●
●●●●

●●●
●

●

●

●●
●

● ●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●

●●●

●●

●

●
●●●

●

●

●

●

●

●

●

●●

●
●●●

●●

●

●

●

●

●

●
●●

●
●

●●●
●●

●●●
●

●

●●
●

●

●●●●
●●●●●●
●●●●●

●
●●

●●●●●
●

●
●●
●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●

●●
●●●●●●●
●

●

●

●●
●

●

●●

●

●

●●

●
●

●

● ●

●
●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●

● ●
●

●
●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●●
●●●

●●●● ●
●

●
●

●●

●
●

●
●

●

●

● ●

●

●
●●

●●
●

●
●

●
●●
●

●

●

●
●●

●●

●
●●●●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●
●●

●

● ●

●●

●
●

●
●

●
●●

●

●

●
●

●
●●

●
●●

●●
●●

●
●
●

●●
●

●●●
●●●●●●
●
●●●●●●●
●●●●
●

●●●●●●
●●●●●

●●●●
●●
●

●

●

●
●

●●●

●
●

●
●●

●

●

●
●

●●●●
●

●
●
●●●●
●●●●
●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●●

●
● ●

●●
●

●
●●

●●

●●

●
●

●●
●

●
●

●
●●

●

●

●

●
●

●

●●

●●●
●

●
●

●

●

● ● ●

●

●●

●

●
●

●
●●

●

●

●
●

●
●
●
●●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●
●●●
●

●●●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●
●
●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●
●
●

●

●

●
●
●●

●●●
●
●

●●●
●

●
●

●
●

●●●●

●

●●●●●
●●

●
●

●

●●

●
●

●●
●●
●

●●
●●●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●●
●

● ●
●

●

●

●
●

●
●
●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●●

●
●

●
●

●

●

●

●

●●
●●●

●●
●

●
●●●
●●●●●●

●●

●

●●
●●●●●

●●●●●●
●

●●●●
●
●

●
●

●●●
●

●

●

●●●●

●

●●
●

●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●
●●●

●
●

●
●

●

● ●

●●
●●

●●
●

●

●
●●

●
●●●

●
●●

●
●

●●●

●●
●●●

●●●●●●●●
●
●

●●●

●
●●

●●
●
●
●●
●
●●

●●

●●●
●

●
●●●
●●

●●●●
●

●
●

●
●

●●

●●●●
●

●●
●

●●

●

●
●

●

●●●
●
●●●●●

●●●

●
●●

●

●

●

●
●

●
●

●
●

●●
●

●
●●

●
●●

●
●

●

●●●
●

●●●
●

●●
●
●

●
●●●

●●●●

●
●

●●
●
●●

●

●

●
●

●
●●

●●●
●●●
●●

●

●
●

●

●

●

●
●

●
●

●●
●
●●

FIGURE 16.1 Scatter plot of hourly NOx vs. NO2 at Marylebone Road for 2003.

layout for panel arrangement, pch for plot symbol and lwd and lty for
line width and type, as also available (see examples below).
For method = "hexbin" it can be useful to transform the scale if it is
dominated by a few very high values. This is possible by supplying two
functions: one that that applies the transformation and the other that in-
verses it. For log scaling (the default) for example,trans = function(x)

log(x) and inv = function(x) exp(x). For a square root transform
use trans = sqrt and inv = function(x) x^2. To not carry out any
transformation the options trans = NULL and inv = NULL should be
used.

16.3 Example of use

We provide a few examples of use and as usual, users are directed towards the help
pages (type ?scatterPlot) for more extensive examples.

First we select a subset of data (2003) using the openair selectByDate function and
plot NOx vs. NO2 (Figure 16.1).

Often with several years of data, points are over-plotted and it can be very difficult
to see what the underlying relationship looks like. One very effective method to use
in these situations is to ‘bin’ the data and to colour the intervals by the number of
counts of occurrences in each bin. There are various ways of doing this, but ‘hexagonal
binning’ is particularly effective because of the way hexagons can be placed next to one
another.7 To use hexagonal binning it will be necessary to install the hexbin package:

install.packages("hexbin")

Now it should be possible to make the plot by setting the method option to method

= "hexbin", as shown in Figure 16.2. The benefit of hexagonal binning is that it
works equally well with enormous data sets e.g. several million records. In this case

7In fact it is not possible to have a shape with more than 6 sides that can be used to forma a lattice
without gaps.

132

16 The scatterPlot function

scatterPlot(data2003, x = "nox", y = "no2", method = "hexbin", col= "jet")

NOx

N
O

2

0

50

100

150

200

0 200 400 600

Counts

1
1
2
3
5
7

10
14
20
30
43
63
92

135
196
286
417

FIGURE 16.2 Scatter plot of hourly NOx vs. NO2 at Marylebone Road using hexagonal binning.
The number of occurrences in each bin is colour-coded (not on a linear scale). It is now possible
to see where most of the data lie and a better indication of the relationship between NOx and
NO2 is revealed.

Figure 16.2 provides a clearer indication of the relationship between NOx and NO2
than Figure 16.1 because it reveals where most of the points lie, which is not apparent
from Figure 16.1. Note that For method = "hexbin" it can be useful to transform
the scale if it is dominated by a few very high values. This is possible by supplying
two functions: one that that applies the transformation and the other that inverses
it. For log scaling for example (the default), trans = function(x) log(x) and inv

= function(x) exp(x). For a square root transform use trans = sqrt and inv =

function(x) x2�. To not apply any transformation trans = NULL and inv = NULL

should be used.
Note that when method = "hexbin" there are various options that are useful e.g. a

border around each bin and the number of bins. For example, to place a grey border
around each bin and set the bin size try:

scatterPlot(mydata, x = "nox", y = "no2", method = "hexbin", col = "jet",

border = "grey", xbin = 15)

The hexagonal binning and other binning methods are useful but often the choice
of bin size is somewhat arbitrary. Another useful approach is to use a kernel density
estimate to show where most points lie. This is possible in scatterPlot with the
method = "density" option. Such a plot is shown in Figure 16.3.

Sometimes it is useful to consider how the relationship between two variables varies
by levels of a third. Inopenair this approach is possible by setting the optiontype. When
type is another numeric variables, four plots are produced for different quantiles of
that variable. We illustrate this point by considering how the relationship between NOx
and NO2 varies with different levels of O3. We also take the opportunity to not plot the
smooth line, but plot a linear fit instead and force the layout to be a 2 by 2 grid.

133

16 The scatterPlot function

scatterPlot(selectByDate(mydata, year = 2003), x = "nox", y = "no2",

method = "density", col = "jet")

NOx

N
O

2

50

100

150

200

0 200 400 600

intensity
0.0

0.5

1.0

1.5

2.0

FIGURE 16.3 Scatter plot of hourly NOx vs. NO2 at Marylebone Road using a kernel density
estimate to show where most of the points lie. The ‘intensity’ is a measure of how many points
lie in a unit area of NOx and NO2 concentration.

scatterPlot(data2003, x = "nox", y = "no2", type = "o3", smooth = FALSE,

linear = TRUE, layout = c(2, 2))

NOx

N
O

2 0

50

100

150

200

●
●
●●

●●●
●●●

● ●

●●
●●●

●

●

●
●

●
●

●
●●●

●
●●●

●
●●●●●●●●●

●
●

●

●●
●

●●●●
●●●●●●●

●●●●●●●●●●
●●●●

●
●●●● ●●●●

●●●
●● ●●

●●

●
●●●●

●●

● ●●●
●●●●
●●

●
●●●●●

●

●●
●●●

●
●

●
●

●●●●

●
●●

●

●

● ●●

●
●

●
●

●
●

●●●●●
●●●

●

●

●●
●

●
●

●
●●
●
●

●●
●●

●●

●

●

●
●

●

●
●

●

●

●
●
●●

●●●●
●

●

●
●
●

●
●

●
●●●

●●
●●
●●

●
●
● ●●

●●
●

●

●

●
● ●

●
●●●●

●

● ●
●

●
●● ● ●
●

●
●

●
●●

●

●
●

●●

●●
●●

●●●

● ●●
●

●●
●

●

●●●

●

●●
●

●
●●●●

●

●
●●

●

●

●
●●●

●
●

●●
●

●●●●
●●●●

●●●
●●
●

●●
●●●●

●●●●●●●
●●●●●● ●

●
●

●●●
●

●
●

●●
●

●●●●●●

●

●●

●

●

●
●

●

●
●

● ●
●

●
●●●

●
●

● ●●
●●

●
●●●

●
●

●

●
●

●

●●
●

●●●●

●
●

●●●

●

●●
●

●
●

●●●●

●

●●
●●●

●●
●●

●●

●
●●

●●●
●

●●●
●

●

●● ●●
●
●●

●

●●●
●●

●●
●●●●

●

●●●●
●

●
●

●●●●●●
●● ●●

●
●
●

●
●

●●
●

●

●
●

●

●
●●●
●

●●
●●

●
●

●
●●

●

●
●

●
●

●●

●
●

●● ●

●
●●

●
●

● ●
●●
●

●
●●●●

●

●●
●●

●
●●

●
●

●●
●●●●●●
●

●●●
●●●●●

●●●
●●●●

●
●●●●

●
●●

●

●●●●●
●●

●
●
●

●●●

●

●●
●●

●
●

●●
●

●

●
●

●● ●
●●●

●

●●
●●

●●●●
●

●
●

●
●

●
●

● ●●
●

●●● ●●
●● ●

●
●

●
●

●
●●

●
● ●

●

●

●

●●●●●●
●●●
●●●●
●●
●
●●●● ●

●●●
●

●
●

●
● ●

●●●●
●● ●

●●
●

●●
●●●●

●
●●●

●●●●● ●

●
●●

●

●
●●

●●
●●

●●
●●

● ●
●

●●●
●

●

●

●
●

●

●

●●●●●●
●

●

●

●●
●

●

●

●
●●●●●●●●
● ●

●

●
●

●

●
●● ●●

●●
● ●●●

●
●●

●●

●
●●●

●●
●●

●●

●
● ●

●
●●

●
●

●
●●●

●
●

●
●

●
●
●

●●
●
●
●

●
●●

●
● ●

●
●●

●
●

●

●●
●●

●

●
●

●

●

●
●
●

●
●●

●
●

●●●

●
●

●

●●●●●●
●

●●
●●
●●
●

●●●●
●

●

●
●●●●●

●
●

● ●●
●

●●●

●
●

●
●●●●●

●
●

●
●

●
●

●
●●

●●
●

●
●●●

●●
●

●

●●
●
●●●●
●●

●●●●
●●●●●

●
●

●●●
●●●●●●●●

●●

●
●●

●●
●

●●

●●
●●●

●

●

●
●●●

●●●●●●●●

●

●

●
●

●
●●

●●●
●

●
●

●
●●

●
●●

●
●

●
●

●●
●●●●
●●●●●●●●

●

●●

●

●

●

● ●

●

●●●
●●

●

●●●●●
●

●●
●●

●

●

●

●●

●●●
●●●

●●
●●●●

●

●
●●●

●
●

●●

●

●
●●●
●●●
●●
●

●●●●

●
●●●● ●●

●

●

●
●

●
●●

●●
●

●●●●●●
●

●

●

●●●●
●●

●

●

●

●

●
●
●●

●
●●

●● ●

●
●
●

●●

●
●●●

●
●

●

●●
●

●●

●
●●●●

●

●
●●

●
●

●

●
●●

●
●●●
●

●
●●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●
●

●
●● ●

●

●
●

●

●●●
●

●

●●

●
●

●
●

●●●
●
●
●

●●●
●

●●
●

●
●

●
●

●

●

●
●
●●

●●
● ●

●●●
●●●●

●

●●
●●

●
●
●●

●
●●●●

●
●

●●
● ●

●●●●

●
●
●

●

●
●

●●●
●●

●
●

●

●
●
●
●●●

●●
●
●●

●

●

●
●●●

●
●

●

●
●

● ●● ●

●
●

●

●
●

●

●●

●

●

●
●●

●
●

●

●

●●●

●
●

● ●

●

●

●●

●
●

●●

●

●●
●●●●

●●
●●

●

●

●

●
●

●

●

●

●●

●●
●●

●●●●
●●●

●
●●
●

●●

●

●●
●
●

●

●●
●

●●●
●●●

●●●●

●
●●●
●●

●
●

●

●●

●
●●
●

●
●●●

●

● ●

●

●
●

●
●

●

●
●

●

●●●●
●

●
●

●●●
●

●●
●

●

●●●
●

●
●

●

●

●
●

●
●●

●
●

●●●

●●
●●●●●●●

●
●
●●

● ●●
●

●●

●●●

●

●

●
●

●
●

●●
●

●●
●

●

●●
●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●●●●●
●●●
●●●●

●

●
●●●

●

●

●
●●●●

●
●
●●●●

●●
●●●●

●

●
●●

●

●
●

●

●
●

●●●●
●

●

●●
●●

● ●●
●

●●
●●
●

●●

●
●●

●●
●

●

●
●
●

●
●

●●
●●

●
●●

●
●●●●●

●
●●●

●●●

●●●●●
●

●
●

●●●●

●
●●

●

●

●●

●
●

●●
●

●

● ●

●●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●●

● ●●

●
●●●

●

●
●

●

●
●

●
●●

●

●

●● ●●
●●●●

●
●●

●

●
●

●

●●
●●●●

●
●

●●●
●

●
●●●

●

●●

●
●●

●
●●●●

●

●

●

●
●

●

●

●

●

●
●●●●

●●●
●

●●●●●

●

●
●

●
●

●

●
●

●●
●

●
●●

●
●

●
●●

●●●●

●
●

●
●●●

●
●●

●●●●

●
●●

●
●

●

●●

●
●

●

●

●

●●●●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●
●
●●

●
●

●●

●

●
●

●●
●

●
●

●●●

●●●●●
●

●●●●

●

●●

●

●●
●●
●●

●●
●●● ●

●

●
●

●●
●

●●●
●●●
●

●
●●●●

●

●●●
●●

●

●●●●●●●
●
●

●●●●●●●●●●
●
●●●

●●●●●●●●●●●●●●
●●●●●●●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●
●●●●●●●

●
●

●

●●

●

●●●
●●

●●●

●

●

●●●

●
●●

●

●

●●

●
● ●

●

●
●

●

●

●
●●

●
●●●

●●●●

●

●

●
●

●●
●●
●●●

●

●●
●

●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●●

●●

●●●
●●

●

● ●●●

●

●

●

●

●●

●

●●
●

●
●●

●
●

●

●●
●

●
●

●●●
●

●

● ●

●
●

●

●
●

●
●

●
●

●●●
●●

●
●

●●

●●
●●

●●

●
●

●●

●●

●●●●
●

●

●

●

●

●

●●

●
●● ●

●

●●
●●

●
●●
●●●

●
●

●

●

●

●●

●●

●
●●●●

●
●

●●●
●●●
●
●
●●

●●●
●●

●
●

●
●●●

●

●●●●●● ●
●●

●●●
●

●●●●●●
●

●
●

●
●

●
●

●

●●
●●●

●
●

●●●
●

●●

●●
●

●

●
●●●

●

●●
●●
●
●

●
●

●●●●
●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●
●●

●

●
●

●

●●
●

●

●

●

●●

●●●
●

●

●

●

● ●●●

●
●

●●
●

●●●

●●
●●

●
●

●

●●●●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●
●●

●

●

●

●
●

●

●
●
● ●
●●

●●

●
●

●

●●
●

●

●
●

●
●
● ●●●

●

●●●

●●

●

●

●

●

●
●

●

●●●

●●

●

●
●

●

●
●●●●●
●●●●●

●●●
●

●

●●●

●●
●●●●●●●

●●●

●
●
●● ●

●
●●

●
●

●●
●

●

●

●●
●

●

●●●●
●●

●

●
●

●

●

●

●●
● ●●

●

●
●

●●

●●
●

●
●●

●

●

●
●

● ●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●●
●

●●
●
●

●

●

●●

●
●

●

●

●
●●●

●

●
●

●
●

●
●

●

●●
●●●

●●●●●●
●

●
●●

●
●●

●●
●
● ●

●

●
●●

●
●

●●
●

●

●●●●
●

●

●
●●

●

●
●

●●
●●

●

● ●●

●

●●

●●

●
●

●●
●

●●
●

●

●●
●●●

●●●●●●●
●
●
●●●●

●●

●
● ●

●●

●
●●

●●●●

●
●●●

●●●●●

●●
●

●
●●

●

●

●
●●

●
●●

●●●●
●

●

●
● ●
●●

●

●
●

●●●
●

●
●

●
●

●●
●

●
● ●●

●
●

●

●●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●●

●●

●

●●
●
●●

●
●●
●

●
●

●

●
●●

●●

●

●●●●
●●●

●

●

●

●
●

●●●

●

●

●
●●

●●
●

●
●

●

●

●
●

●

●●
●

●

●

●●●

●
●

●

●
●

●
●

●
●

●

●●
●

●
●●●

●
●●

●

●
●
●●

●
●●

●
●●
●

●
●

●
●

●

●
●
●

●

●

●
●●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●●
●

●●●●●
●

●

●●●●

●

●●
●

●

●

● ●

●
●

●
●●●

●●
●

●
●●
●●●

●
●

●
●

●

●●
●●●●

●●●
●●●●

●
●

●●
●

●●
●

●●
●

●●●
●●●●●●●●●●●●●

●●●●

●
●

●●
●●●
●
●

●
●●

●●
●●●

●
●●●

●

●
●

●
●●

●●
●●●

NO2=0.2[NOx]+21 R2=0.83

O3 0 to 2

0 200 400 600

●
●●

●
●●

●
●

● ●●

●●
●
●●●●

●●
●●●●●●
●●●●

●●
●

●●●
●●●●●●●●

●●

●
●

●●

●●
●

●●● ●
●

●

●
●●
●

●●●
●

●
●●●

●●●
●●●

●●●●
●

●●
●

●
●
●●

●●
●

●
●

●
●●●●

●

●

●●
●

●●

●●
●

●

●●
● ●●
●
●

●●
●

●

●
●

●

●
●●●

●

●●●
●

●
●●

●
●●
●

●●●●●●●●
●●●●
●

●
●●●

●
●
●

●●●●●●
●
●

●
●

●●●
●

●

●

●

●●

●●
●●●
●

●
●●

●
● ●
●

●
●
●

●

●

●

●
●●

●●
●

●

●
● ●

●
●

●●●
●

●

●
●● ●●●

●●
●●●
●●

●●
●

●
● ●

●●
●

●●
●

●
●

●

●●

●●

●

●

●●
●●

●
●●

●●

● ●●
●

●●
●

●
●

●

●● ●
●

●
●●

●
●

●
●●

●
●●

●●●●●

●

●●●
●●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●
●●

●

●
●

●

● ●

●
●

●
●

●●●
●●

●

●●

●

●

●●●
●●

●
●

●
●

●
●●●

●
●● ●

●●
●

●

●
●●●

●

●

●

●

●
●●●

●
●

●
●

●
● ●●

●

●
●

●
●

●

●●

●●
●●

●

●●●
●●

●●●●
●
●

●●
●

●

●

●
●●

●

●

●

●●●
● ●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●

●●●●
●● ●

●
●

●

●
●●●

●
●●

●

●

●

●
●

●
●

●●
●

●
●

●●

●

●
●

●●

●●

●

●

●

●
●●

●

●
●

●●

●●●●
●●

●●
●

●

●

●

●
● ●
●

●

●

●

● ●●
●

●●●

●

●
●●

●●

●
●

●●
●

●

●●
●

●●●

●
●●

●

●●

●

●
●●
●

●●●●●
●●

●
●

●
●●●●

●

●●●

●
●

●
●

●

●
●●

●●●
●

●
●

●

●

●
●●

●●

●●●●

●

●● ●

●

●
● ●

●●
●

●
●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●●

●

●●●

●●●

●

●

●●

●
●

●

●
●

●●●●
●

●●

●
●

● ●
●

●

●
●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●
●●

●
●●●●

●

●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●●
●

●
●

●●
●●
●●

●

●
●

●

●
●
●

● ●

●

●
●

●●●●
●●

●●●
●

●

●

●●
●●

●●
●

●

●

●●●●

●
●

●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●●

● ●

●

●

●
●

●●

●
●

●

●●
●

●

●
●

●
●

●
●●

●

●●
●

●

●
●

●

●

●

●●

●
●

●
● ●
●

●

●

●

●●●

●

●

●
●
●

●

●
●●
●

●
●

●●●

●●
●●

●

●
●●

●

●
●

●

●

●
●●

●

●
●

●
●●●

●
●

●●

●●

●

●

●
●

●
●●●

●
●●●●
●●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●●●

●

●
●
●

●
●

●

●●

●
●

●
●●

●
●

●●
●●●●●●●

●
●

●●

●

●

●

●

●●
●●●
●

●●
●

●

●

●
●

●
●
●

●●●
●

●

●

●●

●

●

●
●

●●

●●

●●●
●

●
●

●●●●

●

●
●

●
●●

●
●

●●
●● ●

●
●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●
●

●
●
●

●●
●

●

●●●●

●

●

●
●●
●

●

●
●

●

●

●●

●
●

●●

●

●●●
●
●

●

●

●●
●

●
●●●●●●

●●●

●

●

●●
●

●●

●●●
●

●
●
●●
●●

●

●●

●

●
●

●
●
●

●

●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●●●●

●●

●

●
●

●●

●
●

●

●
●

●●
●

●
●

●●

●

●
●

●
●●●●●

●

●
●

●
●

●●
●●

NO2=0.24[NOx]+18 R2=0.87

O3 2 to 4

0 200 400 600

●●●●
●

●●●

●
●●

● ●●
●●●

●●
●●●●●●●●●●
●●●●●●●

●●
●●●

●●●●
●●

●

●
●

●●
●●

●●●●●●●●●●
●●●●
●

●●●●●●●●●
●●●●●

●●●
●

●●

●
●●●

●

●●
●

●●
●

●

● ●●
●

●●
●

●●

●
●

●●●
●●

●

●
●●
●

●
●

●●
●●●●
●
● ●●

●
●●●
●●

●
●

●●

●
●●

●
●●●
●
●

●
●●
●

●●●

●●
●
●

●●●

●
●●●●

●●

●

●●●
●●●●●

●●●
●●●●●●●

●●
●●●●

●

●
●

●
●

●

●●
●

●●●
●

●●●●●
●●

●
●

●●●●●●●
●●
●

●●●●●●
●

●●
●

●●
●●●

●
●●●●● ●●●

●● ●●●
●

●●●
●●●●

●●

●●●●●●●●●
●●●

●

●
●

●
●

●●
●

●●
●
●●●

●●●
●●

● ●
●

●
●
●

●

●●
●

●●
●

●
●
●●
●●

●

●●

●●
●

●
●

●●
●●

●●● ●
●

●●

●

●

●

●●●
●

●
●

●
●

●

●

●●
●●●
●●

●

●●
●

●
●
● ●●●

●
●●
●●●●

●
●

●
●●

●

●● ●
●

●

●●●●●
● ●

●

●
●

●
●

●
●●
●●
●●●

●

●

●●●

●●
●

●●●●

●
●

●●

●
●●

●●
●

●●
●
●

●●
● ●

●

●●●
●●

● ●●

●
●

●
●

●
●●●●

●

●● ●
●

●●●●●●●
●

●
●

●●●●

●

●●

●●●
●●●

●●

●●●●●●
●●●●

●●
●●●

●●●
●●●

●●

●

●

●
●●

●●●●●

●●●●

●●●●●●●●

●

●

●
●●

● ●● ●
●
●

●

●●●

●

●

●

●

●●

●
●

●
● ●

●

●●
●

●
●●●
●

●

●

●

●●

●

●●●●
●

●
●●●●

●●
●

●
●●●

●
●

●
●

●
●●

●
●●

●
●●
●

●
●●

●
●●

●
● ●

●
●

●
●●

●

●●●

●

●●
●
●

●
●●

●
●

●

●●
●

● ●
●●

●

●
●●

●
●
●● ●

●
●●●

●
●●

●
●

●
●

●●●●

●

●●
●●

●

●

●●●●●
●●

●

●
●
●●●

●●●●●

●●●●
●●
●●

●
●

●
●●
●●

●

●●
●

●●

●

●●

●
●

●

●

●●●●
●

●

●
●●●●●

●
●

●●
●

●●●●

●

●

●

●

●
●

●

●
●●

●
●●●

●
●

●●●
●
●●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●●●

●

●

●●
●

●●●●●
●

●
●

●

●
●

●

●

●●

●

●●

●

●
●

●●

●
●●

●●●●
●

●●●●

●●●●●●●●●
●●

●
● ●

●

●

●

●●

●
●

●
●

●

●

●
●●●●

●
●

●

●

●

●
●

●

● ●

●●●
●●●
●

●

●
●

●

●●●●
●● ●●●

●
●

●

●
●●
●

● ●
●

●●
●

●●
●●

●
●

●●
●

●

●
●

●
● ●

●
●●

●

●
●●●

●●

●
●

●●
●
●

●
●

●

●
●●

●

●
●
●●●●
●●
●●

●
●●●

●●●
●

●●●
●

●●

●

●●
●●

●
●
●

●
●
●

● ●

●●

●●●

●
●●

●
●

●
●

●●
●●

●●
●

●
●
●

●●●
●

●

●

●
●

●●●●

●●

●

●

●
●

●

●
●
●●●

●
●●●

●●
●

●
●●●

●●
●●

●
●
●●

● ●
●

●
●

●
●●

●●
●●

●

●
●

●

●●●
●●●

●
●●●●

●
● ●

●
●

● ●
●

●

●●●
●

●

●●

●●●●

●
●

●

●
●●●

●●●
●

●
●

●

●

●
●

●
●

●
●

●

●●●

●
●

●●

●

●●

●

●

●

●

●

●●
●●

●
●

●
●●

●

●●

●
●

●●●
●

●
●●●● ●

●●
●

●

●●
●

●●
●●
●●●

●

●●●●
●

●
●

●●●●
●●
●●

●

●
●

●●●
●

●●●●
●

●

●●●●

●
●
●

●●●
●●●●●

●
●●

●
●

●●●
●●

●

●●

●
●●
●

●

●

●●

●●●●
●

●●
●●●●●

●
●
●●●●

●●
●●●

●
●
●
●
●

●
●

●●
●●

●

●

●

●
●

●

●

●
●

●●

● ●●

●●●
●

●●

●
●

●

●

●●●
●

●
●

●

●

●

●●
●
●

●●●●●
●

●●
●

●

●●●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●●●●
●

●
●

●
●

●●

●

●●
●

●

●
●

●●
●

●●●
●●

●
●
●
●●

●●●●●
●●●

●

●●

●
●

●

●
●●
●●

●
●

●

●
●

●●

●●

●

●

●

●
●

●
●
●

●
●●

●

●●
●

●
●●

●

●●●●

●

●

●
●

●●

●●

●

●

●
●
●●

●●

●

●

●

●
●

●
●●

●
●●●●●
●●●

●●
●
●
●

●
●●

●

●
●●●

●●
●●

●●
●●●●●

●●●
●
●●
●●

●●●
●

●
●●●
●●

●
●

●●●

●
●●
●●●

●

●●
●

●

●

●

●●●
●

●●
●

●
●

●
● ●

●●

●
●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●●

●●

●
●●

●

● ●
●

●

●
●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●
●
●

●●●
●

●●
●●

●

●●●
●●

●
●●

●
●

●

●
●

●

●

●

●●

●

●

●●●●●●
●●●

●●
●

●

●

●

●●
●

●
●

●
●●●

●●

●●

●
●●●

●
●●●●●
●

●●
●●●

●●●●●
●●●●

●

●
●●●

●

●●
●●

●

●●●●●●
●

●●

●●
●●●

●

●●
●●

●
●

●●
●

●●●
●
●

●
●

●

●
●

●

●

●
●●●
●●●●●●

●
●

●●
●
●
●●
●

●
●●●●

●●

●
●

●
●●

●●
●

●

●

●●●●
●●●
●●●●
●●

●

●●

●●●

●●●
●●

●●

●

●

●●
●

●●
●

●●
●●●●●●●●
●
●●●●
●
●

●●
●

●
●

●●
●●

●●●
●
●

●
●●

●●

●●●
●
●●●
●●●

●●
●

●●
●

●●
●

●
●

●
●

●
●

●
●●
●●
●

●●
●●●
●●●

●●
●●

●
●●●●●●●●●

●●●●●●●●●●
●●●●
●●

●●●●●
●

●

●

●

●●
●

●●

●
●●●

●
●●●

●●●●
●●
●●●●●●●●●●
●●●●●

●●●●

●

●

●

●
●

●●
●

●
●

●
●

●●●

●

●
●
●

●●●●
●

●
●
●

●
●

●●●●

●●●
●

●●
●●●

●●●●●
●

●
●●●●●

●
●

●●●●●●●●●●●
●

●●●
●
●●
●●

●●●
●
●

●●
●●●●

●●●

●

●
●●
●●

●●●

NO2=0.29[NOx]+14 R2=0.89

O3 4 to 11

0

50

100

150

200

●
●●●●●●●●●●●●●
●
●●
●●●●●●●
●
●

●●●
●●●●●●●
●●●●●●●

●
●●●●
●●●●
●●●
●●●●
●

●●●●●●

●●
●●●●●●

●●●●
●●●●●

●●●●●●●
●●●●●

●
●●
●●●●●●●●
●●●●
●
●●

●

●
●●●

●●●●●●●●
●●

●●●●●●
●

●
●

●

●●
●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●

●●●●●●●●
●●
●
●

●●●
●●●

●
●●

●
●●

●
●●●

●
●

●●
●

●●●●●

●
●●●

●●
●●●

●

●●
●
●

●
●●●●●●●●●●●●●●●●
●

●
● ●
●

●

●●
●●●

●

●●●●
●●

●●
●●●●●

●●●●●
●

●
●

●
●●●

●

●

●
●

●
●
●

● ●
●

●●
●
●

●
●

●

●●

●●●
●●

●●
●
●

●●●●●●●●●
●●●
●

●●
●●
●

●
●●

●
●●

●

●
●

●
●

●●
●

●
●●●●
●

●
●

●
●

●
●●●
●●●●
●●●
●●●●●

●●●●
●●●●
●
●●●

●●●●●●●●●●●
●●●

●●●●

●
●●●●●●
●●●●●●●●●
●●●

●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●
●

●●
●●

●

●●

●
●

●

●

●
●●●
●

●●
●●
●●●

●
●

●

●
●●●

●●●●●
●

●●●●●●

●
●●●●

●
●

●

●

●●●
●

●●●●
●●●

●
●
●

●

●
●●

●●
●●

●
●

●●

●
●●●

●
●

●●●
●
●●●●●●
●●●●●●●●●
●●●

●
●●●●●●●●●●●●●
●●●●
●●

●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●

●●●●●●●●
●

●●●●●●
●●

●
●

●
●●
●●

●
●
●●

●●
●

●
●

●

●●
●●●●●

●
●

●●●
●

●

●
●●●

●●
●
●
●●

●
●

●
●

●
●
●

●

●
●●●

●
●●
●●

●
●●
●

●

●●
●

●●●●
●

●●●●●●

●
●

●
●●●
●
●●●
●
●●●●●
●

●
●

●

●
●●

●●
●●

●

●
●●●
●●●

●
●

●●●●●
●

●

●

●●
●

●●
●
●

●●
●●

●●

●

●●
●
●●●●●

●
●●
●●
●●●●
●●

●●●
●

●

●
●●●

●
●●
●

●●

●●
●●●

●●●●●
●
●

●●●●●●●

●●●●

●●
●●●
●●
●

●●●

●●●●

●
●●●

●●

●
●

●

●
●

●
●●●●

●
●

●●

●

●

●

●

●

●●
●

●●
●

●
●●

●

●●
●●●
●

●
●●●
●●●

●●●●●
●●

●

●
●●●

●●

●
●

●

●

● ●

●
●

●
●●●●

●

●●

●●
●●●
●

●●

●
●

●●●●●●●

●●●●
●
●●
●●●
●

●
●●●●
●

●

●●
●

●

●●
●

●

●●
●●
●

●
●

●●

●

●
●●
●
●●

●

●
●

●●●

●

●●●
●

●
●

●●●
●●●●

●●●●●
●●
●

●
●

●●●●●
●

●
●●●
●

●

●

●
●

●●●●
●

●
●
●

●●
●●●●
●

●●●●●●
●
●

●

●
●

●
●

●●

●●●

●
●

●●
●

●●●●

●

●●
●
●

●

●

●●
●

●

●●●
●●
●
●

●●●●●●●
●●●

●●●
●
●

●●
●●●

●
●
●

●●●●
●

●●●
●●
●
●
●●

●●●

●●
●

●
●
●

●●●
●
●
●●
●●●●

●●●

●●●●
●

●
●

●

●●
●

●
●

●

●

●

●
●●●●

●

●●
●●●●
●●

●●●
●

●
●

●
●
●

●

●●

●

●●●

●
●●
●

●
●
●●●●●

●●●
●
●

●●●
●

●
●

●●●

●
●●

●●●
●

●
●

●●●
●

●
●

●
●●●
●

●

●

●
●
●
●

●
●●

●
●

●●
●

●
●●●●
●

●●●
●

●
●●●

●●
●

●
●●
●●●

●

●●
●●

●●●●●
●●

●●●
●

●

●

●●●
●

●●
●

●
●

●●●
●
●
●

●

●●
●●

●
●

●

●
●●

●
●

●

●
●●●●●
●

●●●●
●
●●
●●

●

●

●

●●
●●●

●
●

●
●

●●
●

●

●

●
●●

●●●●●●●●
●●●●
●●●
●

●●
●

●
●●●●●

●

●
●

●

●

●

●
●

●

●●●●●●
●

●
●●
●●●●●●●
●

●
●●●●●●●●
●●

●

●
●
●●●
●●
●●●

●
●

●

●

●●

●●

●●●●●●●●
●●●●

●

●
●

●
●

●

●●●●●●●●
●●●●●

●●

●●

●
●●●

●●

●●●●●●●
●●

●●
●●

●●

●●●
●●

●

●
●●

●●
●●●●

●
●

●

●●
●●●

●
●●●●
●

●
●●●
●●
●●●●
●●●
●

●●
●●
●●

●●●
●

●
●●

●●
●

●●●●
●●●●●●●●●●
●●

●●
●●●●●

●●●
●

●

●

● ●
●

●●
●

●●●

●
●

●

●

●
●

●●

●
●

●●●●●●
●
●●

●
●

●
●●

●●

●●●●●
●●●
●
●●

●●●●●●●
●●
●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●
●●
●●
●●●●

●
●

●

●

●●●
●
●●

●●
●●
●●●●●●●

●●●●●●●
●●●

●●●●●●●●●●
●●●

●●●●●●

●
●●●●●●●●
●●●●

●●●●
●●●●●●●●

●
●●

●●●
●

●●●
●●●
●●
●

●●●
●●●●●●●●●●●●●●●●●
●
●

●
●●

●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●
●●●●

●●●●
●
●●●
●

●●
●
●
●

●
●●●●●

●●
●

●●●●●●●●●
●●●●●●●●●●●●●●

●
●
●●
●●●●
●●
●●●
●

●●●●●
●
●●

●●
●●●●●●●●●

●
●

●●●
●●●●●●
●●●
●●●
●

NO2=0.4[NOx]+7.3 R2=0.9

O3 11 to 70

FIGURE 16.4 Scatter plot of hourly NOx vs. NO2 at Marylebone Road by different levels of O3.

Below is an extended example that brings together data manipulation, refined plot
options and linear fitting of two variables with NOx. The aim is to plot the weekly con-
centration of NOx against PM10 and PM2.5 and fit linear equations to both relationships.
To do this we need the x variable as NOx and the y variable as PM10 or PM2.5, which

134

16 The scatterPlot function

means we also need a column that will act as a grouping column i.e. identifies whether
the y is PM10 or PM2.5.

load the packages we need

library(tidyverse)

select the variables of interest

subdat <- select(mydata, date, nox, pm10, pm25) # calculate weekly averages

subdat <- timeAverage(subdat, avg.time = "week")

reshape so we have two variable columns

subdat <- pivot_longer(subdat, cols = c(pm10, pm25), names_to = "pollutant")

head(subdat)

A tibble: 6 x 4

date nox pollutant value

<dttm> <dbl> <chr> <dbl>

1 1997-12-29 00:00:00 128. pm10 21.8

2 1997-12-29 00:00:00 128. pm25 NaN

3 1998-01-05 00:00:00 189. pm10 33.6

4 1998-01-05 00:00:00 189. pm25 NaN

5 1998-01-12 00:00:00 203. pm10 29.1

6 1998-01-12 00:00:00 203. pm25 NaN

Now we will plot weekly NOx versus PM10 and PM2.5 and fit a linear equation to both
— and adjust some of the symbols (shown in Figure 16.5).

scatterPlot(subdat, x = "nox", y = "value", group = "pollutant",

pch = 21:22, cex = 1.6, fill = c("dodgerblue", "tomato"),

col = "white",

linear = TRUE,

xlab = "nox (ppb)",

ylab = "PM concentration (ug/m3)")

NOx (ppb)

P
M

 c
on

ce
nt

ra
tio

n
(µ

g
m

−3
)

20

40

60

80

50 100 150 200 250 300 350

●

●
●● ●

●

●

●
●

●
●

●
●
●

●●

●

●

●
●

●
●

●

●

● ●

●
●

●● ●●

●

●

●

●

●●

●

●

●

●●

●
● ● ●

●

●

●

●
●

●

● ●
●

●●

●

●
●

●

●
●

●
●

●●
●

● ●
●

● ●
●

●
●● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

● ●
●

●

●
●

●●●●
●

●

●
●

●

●
● ●

●●

●

●
● ●

●

●
● ●●●

●

●
●

●

●●●

●

●●

●

●●

●

●

●●

●

●
● ●●

●

●

●

● ●

●●

●

●●
●

●●
●

●

●

● ●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
●●

● ●
●

●
●

●
●
●

●
●● ●

●
● ●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●●

●

●●

●

●

●●

●

●
●

● ●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●●

●

●
●●

●
●

●
●

●
● ●

●

●

●●
●●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

PM10=0.074[NOx]+21 R2=0.28

PM2.5=0.061[NOx]+11 R2=0.34

pollutant

● PM10
PM2.5

FIGURE 16.5 Scatter plot of weekly NOx vs. PM10 and PM2.5 at Marylebone Road with linear
equations shown and plot symbols modified.

To gain a better idea of where the data lie and the linear fits, adding some trans-
parency helps:

135

16 The scatterPlot function

scatterPlot(subdat, x = "nox", y = "value", group = "variable",

pch = 21:22, cex = 1.6, fill = c("dodgerblue", "tomato"),

col = "white",

linear = TRUE,

xlab = "nox (ppb)",

ylab = "PM concentration (ug/m3)",

alpha = 0.2)

The above example will also work with type. For example, to consider how NOx
againts PM10 and PM2.5 varies by season:

scatterPlot(subdat, x = "nox", y = "value", group = "variable",

pch = 21:22, cex = 2, fill = c("dodgerblue", "tomato"),

col = "white", linear = TRUE,

xlab = "nox (ppb)",

ylab = "PM concentration (ug/m3)",

type = "season")

Finally, we show how to plot a continuous colour scale for a third numeric variable
setting the value of z to the third variable. Figure 16.6 shows again the relationship
between NOx and NO2 but this time colour-coded by the concentration of O3. We also
take the opportunity to split the data into seasons and weekday/weekend by setting
type = c("season", "weekend"). There is an enormous amount of information
that can be gained from plots such as this. Differences between weekdays and the
weekend can highlight changes in emission sources, splitting by seasons can show
seasonal influences in meteorology and background O3 and colouring the data by the
concentration of O3 helps to show how O3 concentrations affect NO2 concentrations.
For example, consider the summertime-weekday panel where it clearly shows that the
higher NO2 concentrations are associated with high O3 concentrations. Indeed there
are some hours where NO2 is>100 ppb at quite low concentrations of NOx (≈200 ppb).
It would also be interesting instead of using O3 concentrations from Marylebone Road
to use O3 from a background site.

Figure 16.6 was very easily produced but contains a huge amount of useful informa-
tion showing the relationship between NOx and NO2 dependent upon the concentration
of O3, the season and the day of the week. There are of course numerous other plots
that are equally easily produced.

136

16 The scatterPlot function

scatterPlot(selectByDate(data2003, month = 8), x = "date", y = "so2",

z = "wd")

date vs. SO2 by levels of wind dir.

date

S
O

2

0

5

10

15

20

25

Aug 04 Aug 11 Aug 18 Aug 25 Sep 01

●●●●●
●
●●
●
●
●
●●●●●

●●●
●●
●●●

●●
●
●●●
●●
●

●●
●●●●
●●●●●●●●●●
●●●●●
●
●

●
●

●
●
●●●●

●

●

●

●

●

●●

●
●
●
●
●

●●
●

●

●

●

●
●
●
●

●

●

●
●
●
●

●●

●●

●
●

●

●●
●
●

●

●

●
●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●
●●

●

●●●
●●

●●
●●●●●
●

●

●●

●
●
●●
●
●●

●
●●●●●
●●●●
●
●●●●●●

●●●
●●
●

●
●
●

●
●
●●●

●

●●
●●
●
●●●●
●

●
●●●●

●●
●●●●
●●●●
●
●●
●●●●
●
●

●●

●

●
●●
●●

●
●
●●
●●●

●
●
●
●●●
●

●
●
●●

●●
●●●

●

●

●

●

●

●●●
●
●●●●

●●

●

●

●●
●
●●●●
●●●
●●●●
●●●

●●●●●
●

●
●
●●
●●
●
●●
●

●

●
●●

●

●

●

●

●

●●●
●
●
●
●●●●

●
●
●
●●●●●●●
●
●

●
●

●

●

●

●

●
●
●
●●●●●●
●●
●●

●●●

●
●●●
●

●

●

●
●●

●●●●●●●●●

●
●●●
●
●●●
●●●●●●●●●●●●●●

●
●
●
●●●
●

●
●
●●●
●
●
●

●

●●●●
●

●

●●
●

●

●

●●

●●●●●●
●●●●

●
●●
●●
●

●
●●
●

●
●
●

●

●

●●
●●

●

●●●●●

●

●

●

●

●
●●
●
●
●
●●
●●

●
●

●

●

●●●

●
●●●
●●●●●
●●
●●●●●●

●
●
●
●●
●
●
●

●

●
●
●
●
●●
●
●
●●
●●●
●●
●●●●●●●●●●●●●●●●

●●●●
●●●
●
●●

●
●●●

●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●

●●●●●
●●
●●●
●●
●●●●●
●●●●●
●●●
●●●

●

●

●

●

●

●●●●
●●●●●●
●

●

●●●

●
●●●●●
●
●

●●●●●●

●
●

●
●
●
●●●
●
●
●
●●
●
●●●●●●●
●
●●
●●●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●
●
●
●
●●
●●●
●●
●●●●
●●●

●●●
●
●●
●●●●●●●
●● 50

100

150

200

250

300

350

FIGURE 16.7 Scatter plot of date vs. SO2 at Marylebone Road by different levels of wind direction
for August 2003.

scatterPlot(data2003, x = "nox", y = "no2", z = "o3", type = c("season", "weekend"),

limits = c(0, 30))

NOx vs. NO2 by levels of O3

NOx

N
O

2 0

50

100

150

200

●●●●
●●

●●

●●

●●●●
●

●
●

●●●●
●●●●

●
●●●

●

●●
●●
●●●●●●

●●●
●●●●●●

●
● ●●●
●

●●
●●

●
●

●

●●
●●
●●

●
●● ●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●●●●●
●

● ●
●●●
●●

●

●

●
●

●●
●●●

●●
●

●●●
●

●

●●
●●

●●
●●●●
●●

●
●●●●

●
●●●●
●

●

●●●
●● ●●

●

●
●

●● ●
●

●●●
●

●
●●

●●
●●●

●
●

●●●●●●●●●●●●●●●●
●

●
●●

●●
●

●

●
●●

● ●●
●

●●●●●●●●●●●
●

●●●

●
●●●●

●●
●
●●●● ●●●●● ●●

●●
●●

●●
●●●

●●●

●●
●●

●●●●●
●

●●
● ●

●●●
●

●●
●

●●●
●●

●●●
●●●●

●
●
●

●●
●●●●
●●● ●

●
●

●●

●●
●●

●●●

●●

●
●

●
●

●●●●
●

●
●●
●●●●●●●●●
●●●●
●

●
●●

●

●●
● ●

●
●

●●

●
●●●●

●
●●

●
●
●

●
●●

●
●●

●●●
●

●●●

●
●

●

●
●

●
●

●●
●●●●●

●
●●
●●●●●●●●●

●●●
●

●●
●●

●

●
●●

●
●●●●●●●●●

●●
●●●
●●
● ●●●

●●
●

●●●
●

●●●●
●

●
●●●●

●

●●●
●●●●●
●●

●
●●●

●
●

●●
●●

●
●●

●
●●

●
●

●●●●
●

●
●

●●●
●

●

●●●

●

●

●

●●
●

●●
●

●●●●●●●●
●
●●

●
●

●
●●●●●●●
●●●
●●●●
●●●●●●●
●●●●●●●●●●●●

●●●●●
●

●●●
●

●●
●

●●
●●●●●●●●●●●●●●

●●●●●●
●

●●●
●●●●

●
●●
●
●●●●●●
●●

●●●●●●●
●

●●

●

●
●
●●●
●

●
●●●

●
●●●●●●●
●●●●●

●
●

●
●●●

●●●●

●●●

●●●●●
●
●●●●●●●
●

●●●●
●●●●●●●●●

●

●

●

●●
●

● ●
●

●●
●●

●●
●●●●

●
●

●●
●

●

●●
●

●
●●●●

●●
●●
●

●●●

●
●

●

●●

●●
●●●

●

●●●●
●●

●●
●●●●●

●
●

●
●

●

●

●
●
●
●

●
●●

●●●
●
●●●●●
●

●● ●
●●

●
●●

●
●●●

●
●

●●●
●●●●●●●
●●●●●●●●●
●●●

●●●●●●

●●●●●●●●
●
●●●●●●
●●●
●●

●●●

●
●●
●●

●

●●
●

●

●

●●
●
●●
●●

●
●●●

●
●●

●
●●

●●
●●●●

●

●●
●●●●●●●

●

●●

●●●
●

●●
●

●●
●●●

●

●

●
●

●●
●

●
●
●●

●
●

●

●
●

●●
●

●●
●
●
●

●●●●

●●●●
●

● ●
●●

●
●●

●●
●●●●●●

●●
●

●
●●●●

●

●

●●●

●
●●
●
●

●
●●

●
●

●
●

●●●
●●

●●
●

●

●●
●● ●

●
●

●●

●

●
●●●

●
●
●●

●
●
●●●

●

●●
●

●●●●
●

●●
●●

●●
●
●●●

●●●●
●●

●
●●●●
●

●●
●●
●

●●●

●
●●●

●
●●●
●
●●●●

●●●●●
●

●
●

●●
●●

●●●
●●

●●
●

●●

●●
●
●
●●●
●●●
●●●
●

●

●●●●●
●

●●●

●

●
●

●●

●
●

●
●

●

●
●●

●

●●●●●
●●●

●●
●●●●●●

●●●●●●
●●●

●
●

●
●

●● ●

●

●
●

●●●
●

●
●●●●

●●●
●

●

●

●
●

●
●●

●

●

●

●

●●
●

●●

●
●

●
●●

●
●●

●
●

●

●

●

● ●
●
● ●●●

●
● ●

●

●●

●

●
●●●

●
●

●

●●
●●

●●
●

●●
●●●
●
●

●
●

●
●●●●●
●

● ●
●

●
●

●

●

●●
●●

●●
●

●

●●●●●
●

●
●

●●
●
●●●

●●
●●●●

●●●●
●

●

●
●●

●●
● ●

●
●

●
●●●

●
●●

●
●

●
●●●

●

●

●
●

●

●
●

●●●
●

●
●

●●●
●●
●

●
●●●●

●

●●
●
●

●
●

●
●●●

●●●●
●

●
●●●

●

●

●

●
●●

●
●

●●●● ●●
●●

●
●●●
●●

●

●
●

●●
●
●●●●●●●

●
●

●
●●
●

●
●●●●●

●●●
●

●●●●
●●●

●●●●
●

●
●●●

●

●●
●●●●

●

●
●●

●
●

●
●●

●
●
●●●
●
●

●●●

●
●
●●●●●

●●

●
●●●●●

●●●
●

●●●●
●●

●●
●

●
●●

●
●

●
●●●●

●
●●●●
●●

●

●

●

●

●

●●

●

●
●

●

spring (MAM)

w
ee

kd
ay

0 200 400 600

●●●
●

●
●
●
● ●●●●●●●

●●

●
●
●●●●●

●
●
●

●●
●

●

●●
●●

●●

●
●

●
●●●
●●●●

●
●●●●●

●
●●

●●

●

●
●

●
●

●●●
●●●

●●●●
●

●

●
●●

●
●●

●●●
●

●

●

●
●

●●●
●

●●●●
●

●
●

●

●
●●●

●●
●
●●●

●●●
●●●

●
●
●●

● ●
●

● ●
●

●
●
●●●

●●
●●●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●●

●●●●●●●●●●●

●●●●
●

● ●

●
●

●●
●

●
●●●●

●

●●●● ●●

●●●●
●

●

●
●

●

●
●●
●

●

●
●

●●

●
●●●●●

●●●
●●●●●
●

●

●

●

●
●

●
●

●
●●●●

●●
●●

●●
●

●
●

●

●
●●

●
●●

●●●

●
●

●●
●

●
●●
●●●
●●

●●

●

●

●

●●
●●

●
●

●

●

●●●
●

●●
●●

●●

●●

●
●

●●
●●●●

●●
●●

●
●

●

●
●

● ●

● ●
●●●

●
●
●

●●●

●

●
●

●●●●●●●
●

●●●
●

●

●●●●●
●

●●●
●●●●●●●●●

●

●

●●●●
●

●●●●
●

●●●
●●

●●●
●●

●
●●

●●●●●
●

●●●●●●
●●

●●●
●
●

●
●

●
●●●●

●
●●●
●

●●
●

●●●
●●●●

●●●●●
●

●●
●●

●
●●
●
●

●

●
●●

●
●●

●●●●●
●

●●●●
●

●
●

●
●

●
●●

●●
●● ●●●

●

●●●
●●●

●
●

●●●●●
●
●●

●●
●●

●
●

●●●
●

●
●●

●
●
●

●●

●

●

●●
●

●●●●
●●

●
●●●●●

●●●●●
●

●

●●

●●●
●●

●

●●●●●
●

●●●●
●●●●●●●

●●●●
●

●●●
●

●●●●●
●●

●●
●●●●

●●●●
●

●
●

●●●●
●

●
●

●●
●
●

●
●

●

●
●

●●
●●●●●●● ●

● ●
●

●●

●
●

●
●

●

●

●
●

●
●●●

●●
●●

●●●
●●●

●

●●

●●

●
● ●●

●
●

●●●●
●

●
●
●
●●

●
●●●
●
●
●

●
●

●

●●

●●
●●●●●

●●●

●●●●●
●

●●
●●●●●
●●●●

●●●●
●

●

●●●
●●

●●●
●

●●●●●●●
●

●●●●●
●●

●
●●

●
●
●
●●

●
●●

●●
●●
●

●●●●●●

●
●
●

●
●
●

●

●

●
●●

●

●
●
●●●

●●●●
●

●

●
●●

●●
●●
●●

●
●

●
●

●
●●●●

●●●●
●

● ●

●

●●
●●
●●

●●
●●

●
●●●

●

●
●

●
●

●
●●
●●●●●

●
●

●●●
●
●
●

●●
●●

●●
●

●

●
●●●

●
●

●

●
●●●●●●

●●●●
●●●
●●

●
●

●

●●●●●
●●

●●●●
●

●●
●

●●
●●

●

●
●

●

●
●●

●●●●●●●●
●●●●
●●●
●

●●
●

●●
●

●
●

●●
●

●●●●●●●
●●●

●
●

●

●
●

●
●

●●●
●

●
●●

●●●●
●

●

●●
●
●

●

●
●

●●●●●●
●●

●
●●

●●
●●

●

●●●
●

●●
●

●
●

●
●

●
●●

●●●●
●

●●●

●

●

●
●

●●
●

●
●●

●●
●
●

●

●

●
●

●

●
●●●●●

●
●

●
●●

●

●●●
●

●

●

●
●

●

●

●
●

●●
●●
●

●●●●●●●●●●
●●

●●
●●●●

●●

●●●●●●●
●●●●

●
●●●●●
●●
●

●
●●●●

●
●●●

●●
●

●●●●

●
●

●●
●●●

●
●●

●●●●

●
●●●●

●
●

●
●

●

●

●
●

●
●

●●●●
●●●●●
●●●
●●

●●●
●●●●
●
●

●
●●●●

summer (JJA)

●●●●●
●●●●●●●●●●●●
●●●●

●●●●●●●●
●

●

●●●●
●

●●●
●●●●
●●

●
●

●

●●
●

●●
●

●●
●

●
●●●

●●
●●●

●
●●
●

●
●
●●
●

●●●
●

●
●

●
●

●●

●●●
●

●
● ●

●
● ●
●

●
●

●

●

●
●●

●●
●

●
●
●●
●

●●
●

●
●●●●

●

●●

●●

●

●
●

●

●●●
●

●●

●●●●
●

●●●●

●●●

●

●
●●●

●

●

●
●●

●●● ●●●

●
●● ●

●●

●

●●
●
● ●

●

●

●

●●●

●
●●●

●
●
●●●

●

●●

●

● ●

●
●●

●
●●
●

●●
●

●●●

●●●●●

●

●●

●●●
●●

●
●

●

●●●
●●●●

●
●●●●

●

●
●

●
●●●●
●●●

●●●●●
●●●●

●
●

●

●
●

●

●●
●

●
●

●
●

●
●●

●●●●
●●●●●
●

●
●●

●●
●
●

●

●●

●●●

●●

●
●●

●
●●●●

●
●

●
●

●

●●

●

●
●

●●

●

●●●●

●●●●●

●

●●
● ●●●

●
●●●

●

●
●●●●

●●
●

●
●●

●●●
●

●
●

●
●●●

●
●●●●

●

●●●●
●

●●
●●

●

●

●
●

●●●
●●●●●●●●●●
●●●●

●
●●

●
●

●
●●

●
●

●
●

●
●●●

●●●●●●●●●
●●●●●

●
●●●
●●●●
●

●
●

●●

●●

●●●●
●
●

●●●●●●●
●●

●

●

●

●●
●●

●●
●●
●

●
●●

●

●●●

●●●●
●

●

●●

●
●

●

●

●●

●
●

●

●
●●●●●
●●●●●

●

●●

●

●
●
●

●●●
●●●●●●●●●●

●●●●● ●
●

●
●

●●●●
●
●
●

●

●●
●

●●●●●●●●
●●●●

●
●

●
●

●●
●

●

●

●●●●●●●
●●●●●●

●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●
●

●●●
●

●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●●
●

●●●
●

●●●

●

●

●●

●
●

●●●

●
●●●●

●●●●●
●●●●●●●●●●●
●●●●●
●

●●●●●
●

●

●

●●

●

●
●●●●●●
●●●●●●●

●●
●●●

●
● ●

●

●

●

●
●

●

●

●

●●
●

●
●●

●
●●●

●●●●

●

●
●

●

●●●●

●
●●●●

●●
●

●●●
●

●
●●
●

●

●

●
●

●
●●
●

●●

●

●
●

●

●
●●●

●
●

●

●●
●●

●●

●●●●●
●
●

●
●

●●
●

●

●
●

●●

●
●
●●●●●●●

●

●
●●●

●

●
●

●

●●
●

●
●●

●
●●

●
●

●

●●●
●

●
●●●

●

●

●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●●●●●

●●
●●
●

●●

●
●

●●

●
●

●●
●●

●●●●
●

●

●

●

●

●

●●

●●● ●
●

●●
●●●

●●●●●

●

●

●

●●●
●●●

●●●●●
●

●
●●

●●●●
●

●

●
●
●

●
●

●

●●
●●●

●●

●●●
●

●●
●●●●
●

●
●●●

●
●●

●●●●
●
●

●●●●●●
●●●●●

●
●

●

●

●
●●●
●●

●●
●

●

●

●●●
●

●
●●●

●

●
●

●

●●●
●

●

●

●●

●●

●●
●

●
●●●●
●

●

●
●

●

●●●●
●●

●
●

●
●

●
●

●
●●

●●●●
●

●
●

●

●
●

●
● ●

●
●
●

●●

●
●

●
●●●

●

●

● ●
●

●
●
● ●
●●

●●

●●
●

●●●
●

●
●●●

●

●

●
●● ●

●● ●●●
●

●●●
●●

●

●●●●
●

●

●

●

●
●

●

●●
●●●●

●●

●

●
●

●

●
●●●●●

●●●
●●

●●
●●●●

●●●●●
●

●●
●●●●●●●●

●
●
●● ●

●
●●

●
●

●●
●●

●

●●
●●

●●●●
●●

●
●

●

●●

●

●●●●
●

●
●

●●●
●●

●

●●
●●

●●
●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●
●

●
●

●●
●

●●

●

●●
●

●
●

●
●

●
●●●●

●
●●

autumn (SON)

0 200 400 600

●●●●●●
●

●
●●

●●●
●

●●●●
●●●

●
●●
●
●●● ●

●●●●

●●
●

●
●●●

●
●

●
●●

●●●●● ●

●
●

●●●●●●●●
●●●●●●●●●●●●●
●●●●

●●●●
●●
●●●●●●●●

●●●
●●

●
●
●

●
●

●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●

●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●

●●●
●

●

●●
●●

●●●●
●

●
●●

●●●
●●

●●●●
●

●

●
●●

●

●

●
●
●●

●

●
●

●●
●●

●
●

●●●●●

●
●●

●
● ●

●●
●

●
●●●●●

●●●
●●●●

●

●
●●
●

●
●
●●●
●
●●●

●●
●●

●
●●●●●●

●
●

●●●
●

●

●

●●
●

●
●

●

●

●
●●

●●●●
●

●
●
●●●●

●●●●
●

●

●
● ●

●●
●

●●●●●
●

●

●●●●
●

● ●
●

●
●

●●●
●

●
●●

●● ●●●●
●

●●●●
●

●●
●

●●●●●●●●
●

●●●●●●●●
●●

●●
●●

●
●●

●

●

●

●●●
●●●●●

●
●●
●

●●●
●

●●●
●

●
●

●●●
●●●●●●

●●●●
●●●

●

● ●
●

●●●
●●●
●●

●
●

●●
●●●●●●●●●

●●●●●
●
●●
●●●●●●

●●
●●●●
●

●●●●●●●●●●
●
●

●●●●●●●●●●●●
●
●●●●●●

●
●●
●●●

● ●
●

●
●

●
●●
●●

●
●

●
●●

●
●●

●
●
●

●

●

●

●●
●●●●●●●●

●●

●

●
●●●●●

●
●●●●

●●●
●●●●●
●

●●

●

●

●
●●●
●

●
●●

●
●●●

●
●● ●

●
●●●●●

●
●●

●●●●●
●●

●●

●

●

●● ●●●
●●

●
●●●

●

●

●●●●●
●
●

●
●

●●
●

●
●

●
●

●
●●●
●

●
●●

●
●●●●

●●●
●

●●

●
●

●●
●

●
●

●
●●

●
●●

●●●●
●

●●
●

●
●●●

●
●●●●

●●
●●

●
●

●
●

●●●
●●●●●●●●●● ●●●●●
●●●●●●●●●●●●●

●●●●
●

●
●
●
●

●

●●
●●●●●●●●●

●●
● ●●

●●
●

●●●●
●●●
●
●●●

●
●●●

●
●●●●

●●

●
●

●●
●
● ●● ●

●●●

●
●●

●●●●
●

●
●

●
●

●
●●●

●
●
●
●●●

●
●●●●

●
●

●●●●
●●

●
● ●

●

●
●

●●●
●

●

●

●
●●●●●

●●
●● ●

●

●
● ●

●
●●●

●●
●

●

●
●●

●
●

●
●

●
●

●●●
●

●

●●
●

●●
●

●
●●

●
●

●●●
●

●

●
●

●

●
●●● ●●●

●
●

●
●●
●●
●●●●●●

●

●
●●

●

●
●

●●●

●●●
●
●●●

●
●

●

● ●●

●
●●

●●
●
●●●●●●

●
●

●●
●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●

●●●●

●
●●

●●●

●● ●●
●●●●●

●●

●●
●●

●●
●

●
●●

●

●
●
●●

●
●●

●●●●
●●

●
●

● ●●

●

●●

●

●●●●●
●

●
●●

●●●●●
●●

●
●

●
● ●●

●

●

●●
●

●

●

●●
●

●

●
●

●●●

●

●
●
●

●
●

●

●

●

●

●●
●●●

●●●●●●
●●●

●

●
●●

●●
●

●●
●
●●

●
●●

●●●●
●●

●
●●

●
●●●
●●●

●●●●●
●

●
●

●
●

●●●

●

●

●
●●

●●
●

●
●

●

●
●●

●

●●●●
●

●●●

●
●

●
●

●
●

●
●

●
●

●
●●●

●
●●●●

●●
●

●
●
●●

●
●●

●
●●
●

●
●

●
●

●

●●
●

●

●
●●●

●

●
●●

●

●
●

●
●

●
●●

●

●
●

●
●

●●

●●●●●●
●
●●●●●●
●●

●●●●
●

●
●●●●

●
●●
●

●

●

● ●
●

●
●

●●●
●●

●
●●

●
●

●●
●●●●●●●

●
●●●

●●●●
●●●

●
●●●●
●●●●

●●●●●●●●●●
●

●●●
●

●●●●●
●●
●●●●

●●
●●●●
●●●●●●

●

●●●●●
●

●●●

●●
●

●●●
●●●●●●●●●●●●●

●●●●
●●●●

●●●
●
●

● ●●●●
●●●●●●

●●
●

●●●

●
●

●●
●●

●●
●●●

winter (DJF)

0 200 400 600

●●
●●●●●

●●●●●●●
●

●●●
●● ●

●●●●
●●●●●●●

●●●●●●●
●●
●

●

●
●●

●●

●●
●●

●●

● ●●●
●

●
●
●
●

●●
●

●●
●

●●●●●
●●●●

●
●●

●●
●●●●●

●
●

●●●

●●●●●●●●
●
●●●●●

●●
●●

●
●●●●
●●
●●●●●●

●●●●●●
●●●●

●

●●●

●
●●●

●●●●
●
●

●
●

● ●
●●●●●●●
●●

●●●
●
●

●
●

●
●●

●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●

●
●●●●

●
●●●●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●
●●

●●●
●●

●

●

●●●
●●

●
●●●●

●●●
●

●●
●●●●●●●

●●●●●●●
●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●
●●●●●●●

●●●●
● ●

●●

●

●●
●

●
●●●●
●

●
●

●●●
●●

●●●●●
●●
●●●

●
●
●

●●●●●●●●
●

●●●●●
●● ●

●
●
●●●

●●●●●●
●●●●

●●●
●●●●●
●●●●●●●●●●
●

●●●
●●
●

●●●●●
●● ●

●
●

●
●

●

●

●
●

●
●

●●
●

●●●
●

●
●
●

●●●●
●●

●

●
●
●

●●●●●
●
●●●●

●●●●●●
●

●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●
●●●●●

●
●●

●

●●
●●●

●
●●●●●

●●●●●●
●●●●●●●●

●●

●
●

●
●

●●●
●●
●

●●
●

●
●●●

●●
●●●●●●●w

ee
ke

nd

●●●●●
●●●
●●●●

●

●●
●

●●
●

●●●●

●
●●● ●

●●●
●●

●●●
●

●●

●
●●●

●●●
●●

●●●
●●●

●●
●

●

●
●●●●●
●●●

●●
●●●

●
●

●
●

●●

●
●●●
●

●●

●●
●

●
●●●●●●●

●●
●●●●●●
●●●●●
●

●●●●●
●

●

●●●

●
●●●●●●

●●

●
●

●
●●●●●●●

●
●●●
●

●●●●●
●

●

●
●●●●●

●●●
●

●
●●●●●

●
●●●●
●●●●●●●●●

●●●
●

●
●●●

●

●●●
● ●●●●●●●●●●●
●●●

●●●
●●
●●

●●●
●●●●
●●
●●

●●●●●●●
●●●●●●

●●●●●●●●
●

●
●

●

●●
●●

●
●

●

●●
●●●●●●●

●
●

●●
●

●●

●
●●●●●●

●
●

●●●●●●
●●
●●●●●

●●●
●
●

●●●●
●

●●●●●
●

●
●●

●●
●

●

●●●●
●●●

●●●
●●●●●●●●

●●●●●●●
●●●●

●
●●
●

●

●
●
●

●
●

●●●●
●●●●●●
●●

●
●● ●

●●●●

●●●
●●●●

●

●

●●●
●

●●●
●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●
●

●●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●
●●

●
●●

●●●●●
●●●

●●●●●●●
●

●●
●●●

●●●●●
●●●●
●●●●●●
●
●●●
●
●●●●
●●●●●

●●●●●●●
●●●●

●
●

●●●●●●●●●

0 200 400 600

●

●
●●●

●
●●●●●●

●
●●

●
●

●
●

●

●●

●
●●

●
●●●●

●
●●

●●
● ●

●
●

●

●●
●●

●●●
●●●●●

●

●
●●

●

●

●
●
●
●

●
●

●●●
●

●

●●●

●
●

●

●●
●
●●●
●●

●●●●●●
●●●●●●
●●

●●
●●●

●●●●
●●●●●●●●●●●

●●●
●●●●
●●

●●●●
●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●
●●

●

●

●
●●

●

●●●
●

●●

●
●

●
●

●
●

●●

●

●

●
●

●●
●

●●
●●●●

●●●●●●
●

●●●●●
●
●●
●●●●●●
●

●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●

●

●

●●●

●

●●
●●

●●

●●

●

●
●●

●●
●

●●●●●●
●●●●●●●●●
●
●●●●●●●

●●●●●●●
●●●●
●
●

●●
●

●

●
●

●●●
●●●

●●●
●●●
●●

●●●
●●

●●
●● ●

●●
●●

●●
●●●●
●

●
●●●●●

●●●●
●
●●

●●●
●●●●●●●●●●

●●●●●● ●●●
●●●

●
●●●

●
●●●●●
●

● ●●●
●●

●●●●●
●●

●
●●●●●●●●●●●

●●●
●●●
●●
●

●●●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●
●●●●●
●●●

●
●●●●●

●●●●●●●●
●●

●●●
●●

●
● ●

●
●●●

●●●
●●

●●●●
●

0

50

100

150

200

●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●● ●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●

●● ●●
●●●

●●●●●
●●
● ●●● ●●●●●●●●●

●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●
● ●●

●●●
●
● ● ●

●● ●●●●
●

●

●●●●●

●●
●●

●●
●

●●●●
●

●
●●●●

●●●●
●●●●

●●●
●●

●●●● ●●●●●●
●

●

●

●●●●
●

● ●
●

●
●

●●●
●

●●
●

●● ●●
●●

●●●●●●
●●●●●●●

●●●●●
●●●●●

●●
●●●●
●

●●●●
●●

●●●
●

●●●●●●●●
●●●●●
●●

●●●●
●

●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●
●●●●●●●●●

●
●●●●●
●●●●●
●●

●●
●
●

●●
●●●
●●●
●●●● ●

●●●
●

●
●

●
● ●

●●
●●●

●●●
●●

●
●

●●
●●●●

●

●
●●

●●●●●
●●
●●●●●●●●
●●●

●

●
●

●
●●
●
●

●
●

●
●

●
●

●●●

●●
●●●

●●●

●

●●
●●●

●
●

●
●●●

●
●●
●●●

●●●●
●

●●●●
●●●●
●
●●●●●●●●
●●●●

●
●●●

●
●

●
●

●●
●●●●●●●●●●●
●

●
●

●●●●●●●●
●●●●●●●●●●
●●
●

●●●●●●●
●●●●
●
●●●

●●●●●●●
●●●●
●●

●
●●

●
●●●●●●●●●
●●●
●●●
●

●

●
●●●●

●

0

5

10

15

20

25

> 30

FIGURE 16.6 Scatter plot of hourly NOx vs. NO2 at Marylebone Road by different levels of O3
split by season and weekday-weekend.

Figure 16.7 shows that scatterPlot can also handles dates on the x-axis; in this
case shown for SO2 concentrations coloured by wind direction for August 2003.

Similar to timePlot, scatterPlot can also plot wind vector arrows if wind speed
and wind direction are available in the data frame. Figure 16.8 shows an example of
using the windflow option. The Figure also sets many other options including showing
the concentration of O3 as a colour, setting the colour scale used and selecting a few
days of interest using the selectByDate function. Figure 16.8 shows that when the
wind direction changes to northerly, the concentration of NO2 decreases and that of

137

17 The linearRelation function

scatterPlot(selectByDate(mydata, start = "1/6/2001", end = "5/6/2001"),

x = "date", y = "no2", z = "o3",

col = "increment",

windflow = list(scale = 0.15),

key.footer = "o3\n (ppb)", main = NULL, ylab = "no2 (ppb)")

date

N
O

2
(p

pb
)

20

40

60

80

100

Jun 01 Jun 02 Jun 03 Jun 04 Jun 05 Jun 06

●
●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●
●●

●●●●

●
●

●●●●●
●●●●●●

●●●
●
●●●●

●●

●●
●●
●●●

●●●●
●●
●

●●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●●

●
●●

●
●

●

●

●
●
●●

●

●

●

●

●●

●

●

●
●

●●

●

O3

 (ppb)

5

10

15

20

25

30

35

FIGURE 16.8 Scatter plot of date vs. NO2 with the colour scale representing O3. The wind flow
vectors are also shown.

O3 increases.

17 The linearRelation function

see also

timeVariation

calcFno2

This function considers linear relationships between two pollutants. The relationships
are calculated on different times bases using a linear model. The slope and 95 %
confidence interval in slope relationships by time unit are plotted in several different
ways. The function is particularly useful when considering whether relationships are
consistent with emissions inventories.

The relationships between pollutants can yield some very useful information about
source emissions and how they change. A scatter plot between two pollutants is the
usual way to investigate the relationship. A linear regression is useful to test the strength
of the relationship. However, considerably more information can be gleaned by con-
sidering different time periods, such as how the relationship between two pollutants
vary over time, by day of the week, diurnally and so on. The linearRelation function
does just that — it fits a linear relationship between two pollutants over a wide range of
time periods determined by period.

Consider the relationship between NOx and NO2. It is best to think of the relationship
as:

y = m.x + c (8)

i.e.

NO2 = m.NOx + c (9)

In which case x corresponds to NOx and y corresponds to NO2. The plots show the
gradient,m in what ever units the original data were in. For comparison with emission

138

17 The linearRelation function

inventories it makes sense to have all the units expressed as mass. By contrast, oxidant
slopes are best calculated in volume units e.g. ppb.
linearRelation function is particularly useful if background concentrations are

first removed from roadside concentrations, as the increment will relate more directly
with changes in emissions. In this respect, usinglinearRelationcan provide valuable
information on how emissions may have changed over time, by hour of the day etc.
Using the function in this way will require users to do some basic manipulation with
their data first.

If a data frame is supplied that contains nox, no2 and o3, the y can be chosen as
y = "ox". In function will therefore consider total oxidant slope (sum of NO2 + O3),
which can provide valuable information on likely vehicle primary NO emissions. Note,
however, that most roadside sites do not have ozone measurements and calcFno2 is
the alternative.

17.1 Options available

mydata A data frame minimally containing date and two pollutants.

x First pollutant that when plotted would appear on the x-axis of a relation-
ship e.g. x = "nox".

y Second pollutant that when plotted would appear on the y-axis of a rela-
tionship e.g. y = "pm10".

period A range of different time periods can be analysed. The default is month
but can be year and week. For increased flexibility an integer can be
used e.g. for 3-month valuesperiod = "3 month". Other cases include
"hour"will show the diurnal relationship between x and y and “week-
day” the day of the week relationship between x and y. “day.hour” will
plot the relationship by weekday and hour of the day.

condition For period = "hour", period = "day" and period = "day.hour",
setting condition = TRUEwill plot the relationships split by year. This
is useful for seeing how the relationships may be changing over time.

n The minimum number of points to be sent to the linear model. Because
there may only be a few points e.g. hours where two pollutants are avail-
able over one week, n can be set to ensure that at least n points are sent
to the linear model. If a period has hours < n that period will be ignored.

rsq.thresh The minimum correlation coefficient (R2) allowed. If the relationship be-
tweenxandy is not very good for a particular period, settingrsq.thresh
can help to remove those periods where the relationship is not strong.
Any R2 values below rsq.threshwill not be plotted.

ylab y-axis title, specified by the user.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

cols Colour for the points and uncertainty intervals.

date.breaks Number of major x-axis intervals to use. The function will try and
choose a sensible number of dates/times as well as formatting the date/time

139

17 The linearRelation function

linearRelation(mydata, x = "nox", y = "so2")

date

sl
op

e
fr

om
 S

O
2

=
 m

.N
O

x
+

 c

0.02

0.03

0.04

1998 1999 2000 2001 2002 2003 2004

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●●

●●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

FIGURE 17.1 Relationship between NOx and SO2 using thelinearRelation function. Note that
the units of both pollutants are in ppb. The uncertainty in the slope of the hourly relationship
between SO2 and NOx on a monthly basis is shown at 95 % confidence intervals. The smooth
line and shaded area show the general trend using a loess smooth.

appropriately to the range being considered. This does not always work
as desired automatically. The user can therefore increase or decrease the
number of intervals by adjusting the value of date.breaks up or down.

... Other graphical parameters. A useful one to remove the strip with the
date range on at the top of the plot is to set strip = FALSE.

17.2 Example of use

Some examples of the linearRelation function are given in this section. The first
example considers the ratio of SO2/NOx, which is plotted in Figure 17.1.

Figure 17.1 shows the relationship between NOx and SO2. Early in the series (pre-
1999) the ratio of SO2/NOx was relatively high (about 3.5 in volume units). However,
from 1999 onwards the relationship has been relatively constant. One (probable)
explanation for the higher ratio at the beginning of the series is due to a higher fuel
sulphur content of petrol and diesel. There are many other examples shown in the
package itself, type ?linearRelation to see them.

One of the useful applications of this function is to consider the ‘oxidant’ (sum of NO2
and O3) slope where there are measurements of NOx, NO2 and O3 at a site. At roadside
sites the oxidant slope provides a good indication of the likely ratio of NO2/NOx in
vehicle exhausts. Because there are few sites that measure O3 at the roadside, the
calcFno2 function provides an alternative method of estimation. Figure 17.2 shows
how the oxidant slope (an estimate of f-NO2) varies by day of the week and hour of the
day.

140

18 The trendLevel function

linearRelation(mydata, x = "nox", y = "ox", period = "day.hour")

hour

f−
N

O
2

(%
)

by
 v

ol
.

4

6

8

10

12

0 6 12 18 23

●●

●
●

●

●

●●
●
●
●
●

●●●●
●
●●

●●

●
●
●

Monday

0 6 12 18 23

●

●●
●

●

●

●
●
●

●

●●

●

●
●
●
●
●

●
●

●

●●

●

Tuesday

0 6 12 18 23

●●
●●

●

●

●

●

●●●
●

●
●

●
●
●

●

●

●
●●

●
●

Wednesday

0 6 12 18 23

●

●●●

●

●

●●●●
●
●●

●
●

●

●●
●
●●

●
●
●

Thursday

0 6 12 18 23

●

●

●

●
●

●

●

●●●

●●
●

●

●●

●●

●●●●●

●

Friday

0 6 12 18 23

●

●
●
●

●

●

●
●●

●●
●●

●

●●●●

●●
●
●
●
●

Saturday

0 6 12 18 23

●●
●●

●

●●

●
●●

●
●
●
●
●

●

●
●●●

●●

●
●

Sunday

FIGURE 17.2 Oxidant slope by day of the week and hour of the day.

18 The trendLevel function

18.1 Purpose

The trendLevel function provides a way of rapidly showing a large amount of data
in a condensed way. It is particularly useful for plotting the level of a value against
two categorical variables. These categorical variables can pre-exist in a data set or
be made on the fly using openair. By default it will show the mean value of a variable
against two categorical variables but can also consider a wider range of statistics e.g.
the maximum, frequency, or indeed a user-defined function. The function is much
more flexible than this by showing temporal data and can plot ‘heat maps’ in many
flexible ways. Both continuous colour scales and user-defined categorical scales can
be used.

The trendLevel function shows how the value of a variable varies according to
intervals of two other variables. The x and y variables can be categorical (factor or char-
acter) or numeric. The third variable (z) must be numeric and is coloured according to
its value. Despite being called trendLevel the function is flexible enough to consider
a wide range of plotting variables.

If the x and y variables are not categorical they are made so by splitting the data into
quantiles (using cutData).

18.2 Options available

mydata The openair data frame to use to generate the trendLevel plot.

pollutant The name of the data series inmydata to sample to produce thetrendLevel
plot.

x The name of the data series to use as the trendLevel x-axis. This is used
with the y and type options to bin the data before applying statistic
(see below). Other data series inmydatacan also be used. (Note: trendLevel
does not allow duplication in x, y and type options within a call.)

y The names of the data series to use as the trendLevel y-axis and for
additional conditioning, respectively. As x above.

type See y.

141

18 The trendLevel function

rotate.axis The rotation to be applied to trendLevel x and y axes. The default,
c(90, 0), rotates the x axis by 90 degrees but does not rotate the y axis.
(Note: If only one value is supplied, this is applied to both axes; if more
than two values are supplied, only the first two are used.)

n.levels The number of levels to split x, y and type data into if numeric. The
default, c(10, 10, 4), cuts numeric x and y data into ten levels and
numeric type data into four levels. (Notes: This option is ignored for
date conditioning and factors. If less than three values are supplied,
three values are determined by recursion; if more than three values are
supplied, only the first three are used.)

limits The colour scale range to use when generating the trendLevel plot.

cols The colour set to use to colour the trendLevel surface. cols is passed
to openColours for evaluation. See ?openColours for more details.

auto.text Automatic routine text formatting. auto.text = TRUE passes common
lattice labelling terms (e.g. xlab for the x-axis, ylab for the y-axis
and main for the title) to the plot via quickText to provide common text
formatting. The alternative auto.text = FALSE turns this option off
and passes any supplied labels to the plot without modification.

key.header, key.footer Adds additional text labels above and/or below the scale
key, respectively. For example, passing the options key.header = "",

key.footer = c("mean","nox")adds the addition text as a scale footer.
If enabled (auto.text = TRUE), these arguments are passed to the scale
key (drawOpenKey) viaquickText to handle formatting. The term"get.stat.name",
used as the default key.header setting, is reserved and automatically
adds statistic function names or defaults to "level" when unnamed
functions are requested via statistic.

key.position Location where the scale key should be plotted. Allowed arguments
currently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See ?drawOpenKey for
further details.

labels If a categorical colour scale is required then these labels will be used. Note
there is one less label than break. For example, labels = c("good",

"bad", "very bad"). breaksmust also be supplied if labels are given.

breaks If a categorical colour scale is required then these breaks will be used.
For example, breaks = c(0, 50, 100, 1000). In this case “good”
corresponds to values berween 0 and 50 and so on. Users should set the
maximum value of breaks to exceed the maximum data value to ensure
it is within the maximum final range e.g. 100–1000 in this case. labels
must also be supplied.

statistic The statistic method to be use to summarise locally binned pollutant

measurements with. Three options are currently encoded: “mean” (de-
fault), “max” and “frequency”. (Note: Functions can also be sent directly
via statistic. However, this option is still in development and should
be used with caution. See Details below.)

142

18 The trendLevel function

stat.args Additional options to be used with statistic if this is a function. The
extra options should be supplied as a list of named parameters. (see
Details below.)

stat.safe.mode An addition protection applied when using functions direclty with
statistic that most users can ignore. This option returns NA instead of
running statistic on binned subsamples that are empty. Many com-
mon functions terminate with an error message when applied to an empty
dataset. So, this option provides a mechanism to work with such func-
tions. For a very few cases, e.g. for a function that counted missing
entries, it might need to be set to FALSE (see Details below.)

drop.unused.types Hide unused/empty type conditioning cases. Some condition-
ing options may generate empty cases for some data sets, e.g. a hour
of the day when no measurements were taken. Empty x and y cases
generate ’holes’ in individual plots. However, empty type cases would
produce blank panels if plotted. Therefore, the default, TRUE, excludes
these empty panels from the plot. The alternative FALSE plots all type
panels.

col.na Colour to be used to show missing data.

... Addition options are passed on tocutData fortypehandling andlevelplot
in lattice for finer control of the plot itself.

18.3 Example of use

The standard output from trendLevelis shown in Figure 18.1, which shows the varia-
tion in NOx concentrations by year and hour of the day.

Figure 18.3 indicates that the highest NOx concentrations most strongly associate
with wind sectors about 200 degrees, appear to be decreasing over the years, but do
not appear to associate with an SO2 rich NOx source. Using type = "so2"would have
conditioned by absolute SO2 concentration. As both a moderate contribution from an
SO2 rich source and a high contribution from an SO2 poor source could generate similar
SO2 concentrations, such conditioning can sometimes blur interpretations. The use
of this type of ‘over pollutant’ ratio reduces this blurring by focusing conditioning on
cases when NOx concentrations (be they high or low) associate with relatively high or
low SO2 concentrations.

The plot can be used in much more flexible ways. Here are some examples (not
plotted):

A plot of mean O3 concentration shown by season and by daylight/nighttime hours.

trendLevel(mydata, x = "season", y = "daylight", pollutant = "o3")

Or by season and hour of the day:

trendLevel(mydata, x = "season", y = "hour", pollutant = "o3",

cols = "increment")

How about NOx versus NO2 coloured by the concentration of O3? scatterPlot

could also be used to produce such a plot. However, one interesting difference with
using trendLevel is that the data are split into quantiles where equal numbers of data
exist in each interval. This approach can make it a bit easier to see the underlying
relationship between variables. A scatter plot may have too much data to be clear and

143

18 The trendLevel function

trendLevel(mydata, pollutant = "nox")

month

ho
ur

00
02
04
06
08
10
12
14
16
18
20
22

1998

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000

2001 2002

00
02
04
06
08
10
12
14
16
18
20
22

2003

00
02
04
06
08
10
12
14
16
18
20
22

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005

mean

NOx

100

150

200

250

300

350

400

FIGURE 18.1 Standard trendLevel output.

also outliers (or regions with relatively few data) that make it harder to see what is
going on. The plot generated by the command below makes it a bit easier to see that it
is the higher quantiles of NO2 that are associated with higher O3 concentration (as well
as low NOx and NO2 concentrations).

trendLevel(mydata, x = "nox", y = "no2", pollutant = "o3", border = "white",

n.levels = 10, statistic = "max", limits = c(0, 50))

The plot can also be shown by wind direction sector, this time showing how O3 varies
by weekday, wind direction sector and NOx quantile.

trendLevel(mydata, x = "nox", y = "weekday", pollutant = "o3",

border = "white", n.levels = 10, statistic = "max",

limits = c(0, 50), type = "wd")

By default trendLevel subsamples the plotted pollutant data by the supplied x,
y and type parameters and in each case calculates the mean. The option statistic

has always let you apply other statistics. For example, trendLevel also calculated
the maximum via the option statistic = "max". The user may also use their own
statistic function.

As a simple example, consider the above plot which summarises by mean. This
tells us about average concentrations. It might also be useful to consider a particular
percentile of concentrations. This can be done by defining one’s own function as shown

144

18 The trendLevel function

trendLevel(mydata, pollutant = "nox", y = "wd", border = "white",

cols = "jet")

month

w
in

d
di

r.

N

NE

E

SE

S

SW

W

NW

1998

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000

2001 2002

N

NE

E

SE

S

SW

W

NW

2003

N

NE

E

SE

S

SW

W

NW

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005

mean

NOx

50

100

150

200

250

300

350

400

FIGURE 18.2 trendLevel output with wind direction as y axis. This plot also shows the effect
of setting the border colour to white.

in Figure 18.4.
This type of flexibility really opens up the potential of the function as a screening tool

for the early stages of data analysis. Increased control of x, y, type and statistic al-
low you to very quick explore your data and develop an understanding of how different
parameters interact. Patterns in trendLevel plots can also help to direct your ope-
nair analysis. For example, possible trends in data conditioned by year would suggest
that functions like smoothTrend or TheilSen could provide further insight. Likewise,
windRose or polarPlot could be useful next steps if wind speed and direct condi-
tioning produces interesting features. However, perhaps most interestingly, novel
conditioning or the incorporation of novel parameters in this type of highly flexible
function provides a means of developing new data visualisation and analysis methods.
trendLevel can also be used with user defined discrete colour scales as shown in

Figure 18.5. In this case the default x and y variables are chosen (month and hour) split
by type (year).

145

18 The trendLevel function

new field: so2/nox ratio

mydata$ratio <- mydata$so2/mydata$nox

condition by mydata$new

trendLevel(mydata, "nox", x = "year", y = "wd", type = "ratio")

year

w
in

d
di

r. N

NE

E

SE

S

SW

W

NW

ratio 0 to 0.0184

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

ratio 0.0184 to 0.0237

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

ratio 0.0237 to 0.0335

N

NE

E

SE

S

SW

W

NW

ratio 0.0335 to 0.625

mean

NOx

100

150

200

250

300

FIGURE 18.3 trendLevel output with SO2: NOx ratio type conditioning.

146

18 The trendLevel function

function to estimate 95th percentile

percentile <- function(x) quantile(x, probs = 0.95, na.rm = TRUE)

apply to present plot

trendLevel(mydata, "nox", x = "year", y = "wd", type = "ratio",

statistic = percentile)

year

w
in

d
di

r. N

NE

E

SE

S

SW

W

NW

ratio 0 to 0.0184

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

ratio 0.0184 to 0.0237

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

ratio 0.0237 to 0.0335

N

NE

E

SE

S

SW

W

NW

ratio 0.0335 to 0.625

percentile

NOx

100

150

200

250

300

350

400

450

500

550

FIGURE 18.4 trendLevel using locally defined statistic.

147

18 The trendLevel function

trendLevel(mydata, pollutant = "no2",

border = "white", statistic = "max",

breaks = c(0, 50, 100, 500),

labels = c("low", "medium", "high"),

cols = c("forestgreen", "yellow", "red"))

month

ho
ur

00
02
04
06
08
10
12
14
16
18
20
22

1998

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000

2001 2002

00
02
04
06
08
10
12
14
16
18
20
22

2003

00
02
04
06
08
10
12
14
16
18
20
22

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005

max

NO2

low

medium

high

FIGURE 18.5 trendLevel plot for maximum NO2 concentrations using a user-defined discrete
colour scale.

148

19 openair back trajectory functions

19 openair back trajectory functions

Back trajectories are extremely useful in air pollution and can provide important infor-
mation on air mass origins. Despite the clear usefulness of back trajectories, their use
tends to be restricted to the research community. Back trajectories are used for many
purposes from understanding the origins of air masses over a few days to undertaking
longer term analyses. They are often used to filter air mass origins to allow for more
refined analyses of air pollution — for example trends in concentration by air mass
origin. They are often also combined with more sophisticated analyses such as cluster
analysis to help group similar type of air mass by origin.

Perhaps one of the reasons why back trajectory analysis is not carried out more often
is that it can be time consuming to do. This is particularly so if one wants to consider
several years at several sites. It can also be difficult to access back trajectory data. In an
attempt to overcome some of these issues and expand the possibilities for data analysis,
openair makes several functions available to access and analyse pre-calculated back
trajectories.

Currently these functions allow for the import of pre-calculated back trajectories
are several pre-define locations and some trajectory plotting functions. In time all of
these functions will be developed to allow more sophisticated analyses to be under-
taken. Also it should be recognised that these functions are in their early stages of
development and will may continue to change and be refined.

This importTraj function imports pre-calculated back trajectories using the HYS-
PLIT trajectory model (Hybrid Single Particle Lagrangian Integrated Trajectory Model
http://ready.arl.noaa.gov/HYSPLIT.php). Trajectories are run at 3-hour inter-
vals and stored in yearly files (see below). The trajectories are started at ground-level
(10m) and propagated backwards in time. The data are stored on web-servers at King’s
College London in a similar way to importKCL, which makes it very easy to import
pre-processed trajectory data for a range of locations and years. Note — the back tra-
jectories have been pre-calculated for specific locations and stored as .RData
objects. Users should contact David Carslaw to request the addition of other
locations. So far only a few receptors are available to users but in time the number
will increase. It should be feasible for example to run back trajectories for the past 20
years at all the EMEP sites in Europe.8

Users may for various reasons wish to run HYSPLIT themselves e.g. for different
starting heights, longer periods or more locations. Code and instructions have been
provided in Appendix C for users wishing to do this. Users can also use different
means of calculating back trajectories e.g. ECMWF and plot them in openair provided
a few basic fields are present: date (POSIXct), lat (decimal latitude), lon (decimal
longitude) andhour.inc the hour offset from the arrival date (i.e. from zero decreasing
to the length of the back trajectories). See ?importTraj for more details.

These trajectories have been calculated using the Global NOAA-NCEP/NCAR reanal-
ysis data archives. The global data are on a latitude-longitude grid (2.5 degree). Note
that there are many different meteorological data sets that can be used to run HYS-
PLIT e.g. including ECMWF data. However, in order to make it practicable to run and
store trajectories for many years and sites, the NOAA-NCEP/NCAR reanalysis data is
most useful. In addition, these archives are available for use widely, which is not the
case for many other data sets e.g. ECMWF. HYSPLIT calculated trajectories based on
archive data may be distributed without permission (see http://ready.arl.noaa.
gov/HYSPLIT_agreement.php). For those wanting, for example, to consider higher
resolution meteorological data sets it may be better to run the trajectories separately.

8It takes about 15 hours to run 20 years of 96-hour back trajectories at 3-hour intervals.

149

http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT_agreement.php
http://ready.arl.noaa.gov/HYSPLIT_agreement.php

19 openair back trajectory functions

openair uses the mapproj package to allow users to user different map projections.
By default the projection used is Lambert conformal, which is a conic projection best
used for mid-latitude areas. The HYSPLIT model itself will use any one of three different
projections depending on the latitude of the origin. If the latitude greater than 55.0 (or
less than−55.0) then a polar stereographic projection is used, if the latitude greater
than−25.0 and less than 25.0 the mercator projection is used and elsewhere (the mid-
latitudes) the Lambert projection. All these projections (and many others) are available
in the mapproj package.

Users should see the help file for importTraj to get an up to date list of receptors
where back trajectories have been calculated.

As an example, we will import trajectories for London in 2010. Importing them is
easy:

traj <- importTraj(site = "london", year = 2010)

The file itself contains lots of information that is of use for plotting back trajectories:

head(traj)

receptor year month day hour hour.inc lat lon height pressure

1 1 2010 1 1 9 0 52 -0.100 10 995

2 1 2010 1 1 8 -1 52 0.057 10 995

3 1 2010 1 1 7 -2 52 0.250 10 995

4 1 2010 1 1 6 -3 52 0.488 11 995

5 1 2010 1 1 5 -4 53 0.767 11 995

6 1 2010 1 1 4 -5 53 1.065 11 996

date2 date

1 2010-01-01 09:00:00 2010-01-01 09:00:00

2 2010-01-01 08:00:00 2010-01-01 09:00:00

3 2010-01-01 07:00:00 2010-01-01 09:00:00

4 2010-01-01 06:00:00 2010-01-01 09:00:00

5 2010-01-01 05:00:00 2010-01-01 09:00:00

6 2010-01-01 04:00:00 2010-01-01 09:00:00

The traj data frame contains among other things the latitude and longitude of the
back trajectory, the height (m) and pressure (Pa) of the trajectory. The date field is the
arrival time of the air-mass and is useful for linking with ambient measurement data.

The trajPlot function is used for plotting back trajectory lines and density plots
and has the following options:

mydata Data frame, the result of importing a trajectory file using importTraj.

lon Column containing the longitude, as a decimal.

lat Column containing the latitude, as a decimal.

pollutant Pollutant to be plotted. By default the trajectory height is used.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. ”season”, ”year”,
”weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or

150

19 openair back trajectory functions

factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

map Should a base map be drawn? If TRUE the world base map from the maps
package is used.

group It is sometimes useful to group and colour trajectories according to a
grouping variable. See example below.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.res The resolution of the base map. By default the function uses the ‘world’
map from the maps package. If map.res = "hires" then the (much)
more detailed base map ‘worldHires’ from the mapdata package is used.
Use library(mapdata). Also available is a map showing the US states.
In this case map.res = "state" should be used.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples in-
cludemap.fill = "grey40"andmap.fill = openColours("default",

10). The latter colours the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full
transparency) to 1 (full opacity). Setting it below 1 can help view trajecto-
ries, trajectory surfaces etc. and a filled base map.

projection The map projection to be used. Different map projections are possible
through the mapproj package. See ?mapproject for extensive details
and information on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for
use with the projection argument. This argument is optional only in the
sense that certain projections do not require additional parameters. If
a projection does not require additional parameters then set to null i.e.
parameters = NULL.

orientation From the mapproj package. An optional vector c(latitude, longitude,
rotation) which describes where the ”North Pole” should be when com-
puting the projection. Normally this is c(90, 0), which is appropriate for
cylindrical and conic projections. For a planar projection, you should set
it to the desired point of tangency. The third value is a clockwise rotation
(in degrees), which defaults to the midrange of the longitude coordinates
in the map.

grid.col The colour of the map grid to be used. To remove the grid set grid.col
= "transparent".

npoints A dot is placed every npoints along each full trajectory. For hourly back
trajectories points are plotted every npoint hours. This helps to under-
stand where the air masses were at particular times and get a feel for the
speed of the air (points closer togther correspond to slower moving air
masses). If npoints = NA then no points are added.

151

19 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end ="21/4/2010"),

map.cols = openColours("hue", 10),

col = "grey30")

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

● ●

●

●

●

●
●●●

●
●

●

●

●

●●●
●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

● ●

●

●
●

●

●
● ●

● ●

●

●●

●●●
●

●
●

●

●●

●● ● ● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−49
−45

−40
−35

−30
−25−20−15−10−5 0 5 12

51

55

60

65

70

75

79

FIGURE 19.1 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010.
Note the additional option to vary the country colours using map.cols. By default the map
colours for all countries are grey.

origin If true a filled circle dot is shown to mark the receptor point.

... other arguments are passed to cutData and scatterPlot. This pro-
vides access to arguments used in both these functions and functions
that they in turn pass arguments on to. For example, plotTraj passes
the argument cex on to scatterPlot which in turn passes it on to the
lattice function xyplotwhere it is applied to set the plot symbol size.

Next, we consider how to plot back trajectories with a few simple examples. The first
example will consider a potentially interesting period when the Icelandic volcano, Eyjaf-
jallajökull erupted in April 2010. The eruption of Eyjafjallajökull resulted in a flight-ban
that lasted six days across many European airports. In Figure 19.1 selectByDate is
used to consider the 7 days of interest and we choose to plot the back trajectories as
lines rather than points (the default). Figure 19.1 does indeed show that many of the
back trajectories originated from Iceland over this period. Note also the plot automat-
ically includes a world base map. The base map itself is not at very high resolution
by default but is useful for the sorts of spatial scales that back trajectories exist over.
The base map is also global, so provided that there are pre-calculated back trajectories,
these maps can be generated anywhere in the world. By default the function uses the
‘world’ map from the maps package. If map.res = "hires" then the (much) more
detailed base map ‘worldHires’ from the mapdata package is used.9

9You will need to load the mapdata package i.e. library(mapdata).

152

19 openair back trajectory functions

make a day column

traj$day <- as.Date(traj$date)

plot it choosing a specfic layout

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

type = "day", layout = c(7, 1))

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−15

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−16

●
● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

● ● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●●

●
●

●

●

●

●

●●●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−17

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

● ●

●

●

●

●
●●●

●
●

●

●

●

●●●●

●
●

●

●

●

●●
●
●

● ●

●

●

●
●●●●

●
●

●

●

●●●●
●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−18

●

●

●

●

●●
●
●

●

●

●

●

●●
● ●

●
●

●

●

●

●●
● ●

●
●

●

●

●●
●

●
●

●
●

●

●
●●

● ●
●

●
●

●

●●●
● ●

●

●●

●
●●
●

● ●

●

●●

●●● ● ●
●

●

●●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−19

●●● ● ●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−20

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−49−45−40−35−30−25−20−15−10−505 12

51

55

60

65

70

75

79
2010−04−21

FIGURE 19.2 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
shown separately for each day.

Note thattrajPlotwill only plot full length trajectories. This can be important when
plotting something like a single month e.g. by using selectByDatewhen on partial
sections of some trajectories may be selected.

There are a few other ways of representing the data shown in Figure 19.1. For exam-
ple, it might be useful to plot the trajectories for each day. To do this we need to make
a new column ‘day’ which can be used in the plotting. The first example considers
plotting the back trajectories in separate panels (Figure 19.2).

Another way of plotting the data is to group the trajectories by day and colour them.
This time we also set a few other options to get the layout we want — shown in Fig-
ure 19.3.

So far the plots have provided information on where the back trajectories come
from, grouped or split by day. It is also possible, in common with most other openair
functions to split the trajectories by many other variables e.g. month, season and so
on. However, perhaps one of the most useful approaches is to link the back trajectories
with the concentrations of a pollutant. As mentioned previously, the back trajectory
data has a column ‘date’ representing the arrival time of the air mass that can be used
to link with concentration measurements. A couple of steps are required to do this
using the merge function.

153

19 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

group = "day", col = "jet", lwd = 2, key.pos = "top",

key.col = 4)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−49
−45

−40
−35

−30−25−20−15−10−5 0 5 12

51

55

60

65

70

75

79

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

● ●

●

●

●

●
●●●

●
●

●

●

●

●●●
●

●
●

●

●

●

●
●●
●

● ●

●

●

●

●
● ●
●

●

●

●

●

●●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●●●
● ●

●

●●

●

●
● ●

● ●

●

●●

●●● ●
●

●

●

●●●

●● ● ● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

day
2010−04−15
2010−04−16

2010−04−17
2010−04−18

2010−04−19
2010−04−20

2010−04−21

FIGURE 19.3 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
shown grouped for each day and coloured accordingly.

import data for North Kensington

kc1 <- importAURN("kc1", year =2010)

now merge with trajectory data by 'date'

traj <- merge(traj, kc1, by = "date")

look at first few lines

head(traj)

date receptor year month day hour hour.inc lat lon

1 2010-01-01 09:00:00 1 2010 1 2010-01-01 9 0 52 -0.100

2 2010-01-01 09:00:00 1 2010 1 2010-01-01 8 -1 52 0.057

3 2010-01-01 09:00:00 1 2010 1 2010-01-01 7 -2 52 0.250

4 2010-01-01 09:00:00 1 2010 1 2010-01-01 6 -3 52 0.488

5 2010-01-01 09:00:00 1 2010 1 2010-01-01 5 -4 53 0.767

6 2010-01-01 09:00:00 1 2010 1 2010-01-01 4 -5 53 1.065

height pressure date2 code site o3 no2 co so2

1 10 995 2010-01-01 09:00:00 KC1 London N. Kensington 46 29 0.3 0

2 10 995 2010-01-01 08:00:00 KC1 London N. Kensington 46 29 0.3 0

3 10 995 2010-01-01 07:00:00 KC1 London N. Kensington 46 29 0.3 0

4 11 995 2010-01-01 06:00:00 KC1 London N. Kensington 46 29 0.3 0

5 11 995 2010-01-01 05:00:00 KC1 London N. Kensington 46 29 0.3 0

6 11 996 2010-01-01 04:00:00 KC1 London N. Kensington 46 29 0.3 0

pm10 nox no pm2.5 nv2.5 v2.5 nv10 v10 ws wd

1 8 38 6 NA NA NA 8 0 NA NA

2 8 38 6 NA NA NA 8 0 NA NA

3 8 38 6 NA NA NA 8 0 NA NA

4 8 38 6 NA NA NA 8 0 NA NA

5 8 38 6 NA NA NA 8 0 NA NA

6 8 38 6 NA NA NA 8 0 NA NA

154

19 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

pollutant = "pm10", col = "jet", lwd =2)

PM10

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

● ●

●

●

●

●
●●●

●
●

●

●

●

●●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

● ●

●

●
●

●

●
● ●

● ●

●

●●

●●●
●

●
●

●

●●

●● ● ● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−49
−45

−40
−35

−30
−25−20−15−10−5 0 5 12

51

55

60

65

70

75

79

10

20

30

40

50

60

FIGURE 19.4 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
coloured by the concentration of PM10 (μgm−3).

This time we can use the option pollutant in the function trajPlot, which will
plot the back trajectories coloured by the concentration of a pollutant. Figure 19.4
does seem to show elevated PM10 concentrations originating from Iceland over the
period of interest. In fact, these elevated concentrations occur on two days as shown
in Figure 19.2. However, care is needed when interpreting such data because other
analysis would need to rule out other reasons why PM10 could be elevated; in particular
due to local sources of PM10. There are lots of openair functions that can help here e.g.
timeVariation or timePlot to see if NOx concentrations were also elevated (which
they seem to be). It would also be worth considering other sites for back trajectories
that could be less influenced by local emissions.

However, it is possible to account for the PM that is local to some extent by consider-
ing the relationship between NOx and PM10 (or PM2.5). For example, usingscatterPlot
(not shown):

scatterPlot(kc1, x = "nox", y = "pm2.5", avg = "day", linear = TRUE)

which suggests a gradient of 0.084. Therefore we can remove the PM10 that is
associated NOx in kc1 data, making a new column pm.new:

kc1 <- transform(kc1, pm.new = pm10 - 0.084 * nox)

We have already merged kc1 with traj, so to keep things simple we import traj

155

19 openair back trajectory functions

again and merge it with kc1. Note that if we had thought of this initially, pm.newwould
have been calculated first before merging with traj.

traj <- importTraj(site = "london", year = 2010)

traj <- merge(traj, kc1, by = "date")

Now it is possible to plot the trajectories:

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

pollutant = "pm.new", col = "jet", lwd = 2)

Which, interestingly still clearly shows elevated PM10 concentrations for those two
days that cross Iceland. The same is also true for PM2.5. However, as mentioned
previously, checking other sites in more rural areas would be a good idea.

19.1 Trajectory gridded frequencies

The HYSPLIT model itself contains various analysis options for gridding trajectory data.
Similar capabilities are also available in openair where the analyses can be extended
using other openair capabilities. It is useful to gain an idea of where trajectories come
from. Over the course of a year representing trajectories as lines or points results in
a lot of over-plotting. Therefore it is useful to grid the trajectory data and calculate
various statistics by considering latitude-longitude intervals.

The first analysis considers the number of unique trajectories in a particular grid
square. This is achieved by using the trajLevel function and setting the statistic
option to “frequency”. Figure 19.5 shows the frequency of back trajectory crossings
for the North Kensington data. In this case it highlights that most trajectory origins
are from the west and north for 2010 at this site. Note that in this case, pollutant can
just be the trajectory height (or another numeric field) rather than an actual pollutant
because only the frequencies are considered.

The trajLevel function has the following options:

mydata Data frame, the result of importing a trajectory file using importTraj

lon Column containing the longitude, as a decimal.

lat Column containing the latitude, as a decimal.

pollutant Pollutant to be plotted. By default the trajectory height is used.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. ”season”, ”year”,
”weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

156

19 openair back trajectory functions

smooth Should the trajectory surface be smoothed?

statistic For trajLevel. By default the function will plot the trajectory frequen-
cies.
For trajLevel, the argument method = "hexbin" can be used. In this
case hexagonal binning of the trajectory points (i.e. a point every three
hours along each back trajectory). The plot then shows the trajectory
frequencies uses hexagonal binning. This is an alternative way of viewing
trajectory frequencies compared with statistic = "frequency".
There are also various ways of plotting concentrations.
It is also possible to set statistic = "difference". In this case tra-
jectories where the associated concentration is greater than percentile
are compared with the the full set of trajectories to understand the dif-
ferences in freqeuncies of the origin of air masses. The comparsion is
made by comparing the percentage change in gridded frequencies. For
example, such a plot could show that the top 10% of concentrations of
PM10 tend to orginate from air-mass origins to the east.
If statistic = "pscf" then a Potential Source Contribution Function
map is produced. If statistic = "cwt" then concentration weighted
trajectories are plotted.
If statistic = "cwt" then the Concentration Weighted Trajectory ap-
proach is used. See details.

percentile For trajLevel. The percentile concentration of pollutant against
which the all trajectories are compared.

map Should a base map be drawn? If TRUE the world base map from the maps
package is used.

lon.inc The longitude-interval to be used for binning data for trajLevel.

lat.inc The latitude-interval to be used for binning data when trajLevel.

min.bin For trajLevel the minimum number of unique points in a grid cell.
Counts below min.bin are set as missing. For trajLevel gridded out-
puts.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.res The resolution of the base map. By default the function uses the ‘world’
map from the maps package. If map.res = "hires" then the (much)
more detailed base map ‘worldHires’ from the mapdata package is used.
Use library(mapdata). Also available is a map showing the US states.
In this case map.res = "state" should be used.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples in-
cludemap.fill = "grey40"andmap.fill = openColours("default",

10). The latter colours the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full
transparency) to 1 (full opacity). Setting it below 1 can help view trajecto-
ries, trajectory surfaces etc. and a filled base map.

157

19 openair back trajectory functions

projection The map projection to be used. Different map projections are possible
through the mapproj package. See ?mapproject for extensive details
and information on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for
use with the projection argument. This argument is optional only in the
sense that certain projections do not require additional parameters. If
a projection does not require additional parameters then set to null i.e.
parameters = NULL.

orientation From the mapproj package. An optional vector c(latitude, longitude,
rotation) which describes where the ”North Pole” should be when com-
puting the projection. Normally this is c(90, 0), which is appropriate for
cylindrical and conic projections. For a planar projection, you should set
it to the desired point of tangency. The third value is a clockwise rotation
(in degrees), which defaults to the midrange of the longitude coordinates
in the map.

grid.col The colour of the map grid to be used. To remove the grid set grid.col
= "transparent".

origin should the receptor origin be shown by a black dot?

... other arguments are passed to cutData and scatterPlot. This pro-
vides access to arguments used in both these functions and functions
that they in turn pass arguments on to. For example, plotTraj passes
the argument cex on to scatterPlot which in turn passes it on to the
lattice function xyplotwhere it is applied to set the plot symbol size.

It is also possible to use hexagonal binning to gain an idea about trajectory frequen-
cies. In this case each 3-hour point along each trajectory is used in the counting. The
code below focuses more on Europe and uses the hexagonal binning method. Note
that the effect of the very few high number of points at the origin has been diminished
by plotting the data on a log scale — see page 132 for details.

19.2 Trajectory source contribution functions

Back trajectories offer the possibility to undertake receptor modelling to identify the
location of major emission sources. When many back trajectories (over months to
years) are analysed in specific ways they begin to show the geographic origin most
associated with elevated concentrations. With enough (dissimilar) trajectories those
locations leading to the highest concentrations begin to be revealed. When a whole
year of back trajectory data is plotted the individual back trajectories can extend 1000s
of km. There are many approaches using back trajectories in this way and Fleming et al.
(2012) provide a good overview of the methods available. openair has implemented a
few of these techniques and over time these will be refined and extended.

19.2.1 Identifying the contribution of high concentration back trajectories

A useful analysis to undertake is to consider the pattern of frequencies for two different
conditions. In particular, there is often interest in the origin of high concentrations
for different pollutants. For example, compared with data over a whole year, how
do the frequencies of occurrence differ? Figure 19.7 shows an example of such an
analysis for PM10 concentrations. By default the function will compare concentrations

158

19 openair back trajectory functions

trajLevel(traj, statistic = "frequency")

−94

−80

−60

−40
−200 20

40

68

27
30

35

40

45

50

55

60

65

70

75

80

84

●

% trajectories

0 to 1

1 to 5

5 to 10

10 to 25

25 to 100

FIGURE 19.5 Gridded back trajectory frequencies. Theborder = NAoption removes the border
around each grid cell.

trajLevel(subset(traj, lat > 30 & lat <70 & lon > -30 & lon <20),

method = "hexbin", col = "jet",

xbin = 40)

−30−25−20−15−10−5 0 5 10 15 20

30

35

40

45

50

55

60

65

70

●

Counts

1

2

3

6

10

17

30

54

95

167

296

522

923

1630

2879

5085

8982

FIGURE 19.6 Gridded back trajectory frequencies with hexagonal binning.

159

19 openair back trajectory functions

trajLevel(traj, pollutant = "pm10", statistic = "difference",

col = c("skyblue", "white", "tomato"), min.bin = 50, border = NA,

xlim = c(-20, 20), ylim = c(40, 70))

−20 −15 −10 −5 0 5 10 15
20

40

45

50

55

60

65

70

●

gridded differences

(90th percentile)

<−10

−10 to −5

−5 to −1

−1 to 1

1 to 5

5 to 10

>10

FIGURE 19.7 Gridded back trajectory frequencies showing the percentage difference in occur-
rence for high PM10 concentrations (90th percentile) compared with conditions over the full
year.

>90th percentile with the full year. The percentile level is controlled by the option
percentile. Note also there is an option min.bin that will exclude grid cells where
there are fewer than min.bin data points. The analysis compares the percentage of
time the air masses are in particular grid squares for all data and a subset of data where
the concentrations are greater than the given percentile. The graph shows the absolute
percentage difference between the two cases i.e. high− base.

Figure 19.7 shows that compared with the whole year, high PM10 concentrations
(>90th percentile) are more prevalent when the trajectories originate from the east,
which is seen by the positive values in the plot. Similarly there are relatively fewer
occurrences of these high concentration back trajectories when they originate from the
west. This analysis is in keeping with the highest PM10 concentrations being largely con-
trolled by secondary aerosol formation from air-masses originating during anticyclonic
conditions from mainland Europe.

Note that it is also possible to use conditioning with these plots. For example to split
the frequency results by season:

trajLevel(traj, pollutant = "pm10", statistic = "frequency", col = "heat",

type = "season")

19.2.2 Allocating trajectories to different wind sectors

One of the key aspects of trajectory analysis is knowing something about where air
masses have come from. Cluster analysis can be used to group trajectories based on
their origins and this is discussed in Section 19.3. A simple approach is to consider
different wind sectors e.g. N, NE, E and calculate the proportion of time a particular
back trajectory resides in a specific sector. It is then possible to allocate a particular
trajectory to a sector based on some assumption about the proportion of time it is in

160

19 openair back trajectory functions

that sector — for example, assume a trajectory is from the west sector if it spends at
least 50% of its time in that sector or otherwise record the allocation as ‘unallocated’.
The code below can be used as the basis of such an approach.

First we import the trajectories, which in this case are for London in 2010:

traj <- importTraj(site = "london", year = 2010)

need start/end lat and lon to work out angles

id <- which(traj$hour.inc == 0)

y0 <- traj$lat[id[1]]

x0 <- traj$lon[id[1]]

calculate angle and then assign sector

traj <- transform(traj, angle = atan2(lon - x0, lat - y0) * 360 / 2 / pi)

ids <- which(traj$angle < 0)

traj$angle[ids] <- traj$angle[ids] + 360

traj$sector <- cut(traj$angle, breaks = seq(22.5, 382.5, 45),

labels = c("NE", "E", "SE", "S", "SW", "W",

"NW", "N"))

traj[, "sector"][is.na(traj[, "sector"])] <- "N" # for wd < 22.5

count frequencies of sectors for each trajectory and the maximum

alloc <- tapply(traj$sector, traj$date, table)

alloc <- as.data.frame(do.call(rbind, alloc))

alloc$max <- apply(alloc, 1, max)

identify the most frequent sector

alloc$sec <- sapply(1:nrow(alloc),

function(x) colnames(alloc)[which.max(alloc[x,])])

assign to most frequent sector, or label unallocated

below assumes at least 50 out of 96 hours for assignment

alloc$sec <- ifelse(alloc$max > 50, alloc$sec, "unallocated")

alloc$date <- ymd_hms(rownames(alloc))

alloc <- alloc[, c("date", "sec")]

merge with orginal data

traj <- merge(traj, alloc, by = "date", all = TRUE)

Now it is possible to post-process the data. traj now has the angle, sector and
allocation (sec).

head(traj)

date receptor year month day hour hour.inc lat lon height

1 2010-01-01 09:00:00 1 2010 1 1 9 0 52 -0.100 10

2 2010-01-01 09:00:00 1 2010 1 1 8 -1 52 0.057 10

3 2010-01-01 09:00:00 1 2010 1 1 7 -2 52 0.250 10

4 2010-01-01 09:00:00 1 2010 1 1 6 -3 52 0.488 11

5 2010-01-01 09:00:00 1 2010 1 1 5 -4 53 0.767 11

6 2010-01-01 09:00:00 1 2010 1 1 4 -5 53 1.065 11

pressure date2 angle sector sec

1 995 2010-01-01 09:00:00 0 N unallocated

2 995 2010-01-01 08:00:00 31 NE unallocated

3 995 2010-01-01 07:00:00 33 NE unallocated

4 995 2010-01-01 06:00:00 36 NE unallocated

5 995 2010-01-01 05:00:00 39 NE unallocated

6 996 2010-01-01 04:00:00 42 NE unallocated

161

19 openair back trajectory functions

First, merge the air quality data from North Kensington:

traj <- merge(traj, kc1, by = "date")

We can work out the mean concentration by allocation, which shows the clear im-
portance for the east and south-east sectors.

tapply(traj$pm2.5, traj$sec, mean, na.rm = TRUE)

E N NE NW S SE

22 12 13 14 14 29

SW unallocated W

11 15 12

Finally, the percentage of the year in each sector can be calculated as follows:

100 * prop.table(table(traj$sec))

##

E N NE NW S SE

6.7 5.5 10.3 9.2 2.2 2.1

SW unallocated W

8.8 29.5 25.8

19.2.3 Potential Source Contribution Function (PSCF)

If statistic = "pscf" then the Potential Source Contribution Function (PSCF) is
plotted. The PSCF calculates the probability that a source is located at latitude i and
longitude j (Fleming et al. 2012; Pekney et al. 2006). The PSCF is somewhat analogous
to the CPF function described on page 52 that considers local wind direction probabili-
ties. In fact, the two approaches have been shown to work well together (Pekney et al.
2006). The PSCF approach has been widely used in the analysis of air mass back tra-
jectories. Ara Begum et al. (2005) for example assessed the method against the known
locations of wildfires and found it performed well for PM2.5, EC (elemental carbon)
and OC (organic carbon) and that other (non-fire related) species such as sulphate had
different source origins. The basis of PSCF is that if a source is located at (i, j), an air
parcel back trajectory passing through that location indicates that material from the
source can be collected and transported along the trajectory to the receptor site. PSCF
solves

PSCF =
mij

nij
(10)

where nij is the number of times that the trajectories passed through the cell (i, j)
andmij is the number of times that a source concentration was high when the trajec-
tories passed through the cell (i, j). The criterion for determiningmij is controlled by
percentile, which by default is 90. Note also that cells with few data have a weighting
factor applied to reduce their effect.

An example of a PSCF plot is shown in Figure 19.8 for PM2.5 for concentrations>90th
percentile. This Figure gives a very clear indication that the principal (high) sources are
dominated by source origins in mainland Europe — particularly around the Benelux
countries.

162

19 openair back trajectory functions

trajLevel(subset(traj, lon > -20 & lon < 20 & lat > 45 & lat < 60),

pollutant = "pm2.5", statistic = "pscf", col = "increment",

border = NA)

−20
−15

−10 −5 0 5 10
15

20

45

48

50

52

54

56

58

60

●

PSCF

probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIGURE 19.8 PSCF probabilities for PM2.5 concentrations (90th percentile).

19.2.4 Concentration Weighted Trajectory (CWT)

A limitation of the PSCF method is that grid cells can have the same PSCF value when
sample concentrations are either only slightly higher or much higher than the criterion
(Hsu et al. 2003). As a result, it can be difficult to distinguish moderate sources from
strong ones. Seibert et al. (1994) computed concentration fields to identify source areas
of pollutants. This approach is sometimes referred to as the CWT or CF (concentration
field). A grid domain was used as in the PSCF method. For each grid cell, the mean
(CWT) or logarithmic mean (used in the Residence Time Weighted Concentration
(RTWC) method) concentration of a pollutant species was calculated as follows:

ln(Cij) =
1

∑N
k=1 τijk

N
∑
k=1

ln(ck)τijk (11)

where i and j are the indices of grid, k the index of trajectory,N the total number of
trajectories used in analysis, ck the pollutant concentration measured upon arrival of
trajectory k, and τijk the residence time of trajectory k in grid cell (i, j). A high value
of Cij means that, air parcels passing over cell (i, j) would, on average, cause high
concentrations at the receptor site.

Figure 19.9 shows the situation for PM2.5 concentrations. It was calculated by record-
ing the associated PM2.5 concentration for each point on the back trajectory based on
the arrival time concentration using 2010 data. The plot shows the geographic areas
most strongly associated with high PM2.5 concentrations i.e. to the east in continental
Europe. Both the CWT and PSCF methods have been shown to give similar results and
each have their advantages and disadvantages (Lupu and Maenhaut 2002; Hsu et al.
2003). Figure 19.9 can be compared with Figure 19.8 to compare the overall identifica-
tion of source regions using the CWT and PSCF techniques. Overall the agreement is
good in that similar geographic locations are identified as being important for PM2.5.

Figure 19.9 is useful, but it can be clearer if the trajectory surface is smoothed, which
has been done for PM2.5 concentrations shown in Figure 19.10.

163

19 openair back trajectory functions

trajLevel(subset(traj,lon > -20 & lon < 20 & lat > 45 & lat < 60),

pollutant = "pm2.5", statistic="cwt", col = "increment",

border = "white")

−20
−15

−10 −5 0 5 10
15

20

45

48

50

52

54

56

58

60

●

5

10

15

20

25

30

35

FIGURE 19.9 Gridded back trajectory concentrations showing mean PM2.5 concentrations using
the CWT approach.

trajLevel(subset(traj, lat > 45 & lat < 60 & lon >-20 & lon <20),

pollutant ="pm2.5", statistic = "cwt", smooth = TRUE,

col = "increment")

−20
−15

−10 −5 0 5 10
15

20

45

48

50

52

54

56

58

60

●

0

5

10

15

20

25

FIGURE 19.10 Gridded and smoothed back trajectory concentrations showing mean PM2.5
concentrations using the CWT approach.

164

19 openair back trajectory functions

In common with most other openair functions, the flexible ‘type’ option can be used
to split the data in different ways. For example, to plot the smoothed back trajectories
for PM2.5 concentrations by season.

trajLevel(subset(traj, lat > 40 & lat < 70 & lon >-20 & lon <20),

pollutant = "pm2.5", type = "season", statistic = "pscf",

layout = c(4, 1))

It should be noted that it makes sense to analyse back trajectories for pollutants
that have a large regional component — such as particles or O3. It makes little sense to
analyse pollutants that are known to have local impacts e.g. NOx. However, a species
such as NOx can be helpful to exclude ‘fresh’ emissions from the analysis.

19.3 Back trajectory cluster analysis with the trajCluster function

Often it is useful to use cluster analysis on back trajectories to group similar air mass
origins together. The principal purpose of clustering back trajectories is to post-process
data according to cluster origin. By grouping data with similar geographic origins it
is possible to gain information on pollutant species with similar chemical histories.
There are several ways in which clustering can be carried out and several measures of
the similarity of different clusters. A key issue is how the distance matrix is calculated,
which determines the similarity (or dissimilarity) of different back trajectories. The
simplest measure is the Euclidean distance. However, an angle-based measure is also
often used. The two distance measures are defined below. In openair the distance
matrices are calculated using C++ code because their calculation is computationally
intensive. Note that these calculations can also be performed directly in the HYSPLIT
model itself.

The Euclidean distance between two trajectories is given by Equation 12. WhereX1,
Y1 and X2, Y2 are the latitude and longitude coordinates of back trajectories 1 and 2,
respectively. n is the number of back trajectory points (96 hours in this case).

d1,2 = (
n
∑
i=1
((X1i − X2i)2 + (Y1i − Y2i))2)

1/2

(12)

The angle distance matrix is a measure of how similar two back trajectory points are
in terms of their angle from the origin i.e. the starting location of the back trajectories.
The angle-based measure will often capture some of the important circulatory features
in the atmosphere e.g. situations where there is a high pressure located to the east of the
UK. However, the most appropriate distance measure will be application dependent
and is probably best tested by the extent to which they are able to differentiate different
air-mass characteristics, which can be tested through post-processing. The angle-
based distance measure is defined as:

d1,2 =
1
n

n
∑
i=1

cos−1 (0.5
Ai + Bi + Ci

√AiBi
) (13)

where

Ai = (X1(i) − X0)2 + (Y1(i) − Y0)2 (14)

Bi = (X2(i) − X0)2 + (Y2(i) − Y0)2 (15)

Ci = (X2(i) − X1(i))2 + (Y2(i) − Y1(i))2 (16)

165

19 openair back trajectory functions

whereX0 and Y0 are the coordinates of the location being studied i.e. the starting
location of the trajectories.

The trajCluster function has the following options:

traj An openair trajectory data frame resulting from the use of importTraj.

method Method used to calculate the distance matrix for the back trajectories.
There are two methods available: “Euclid” and “Angle”.

n.cluster Number of clusters to calculate.

plot Should a plot be produced?

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season" will produce
four plots — one for each season. Note that the cluster calculations are
separately made of each level of ”type”.

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “jet” andRColorBrewercolours — see theopenairopenColours
function for more details. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue")

split.after For type other than “default” e.g. “season”, the trajectories can either
be calculated for each level of type independently or extracted after the
cluster calculations have been applied to the whole data set.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples in-
cludemap.fill = "grey40"andmap.fill = openColours("default",

10). The latter colours the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full
transparency) to 1 (full opacity). Setting it below 1 can help view trajecto-
ries, trajectory surfaces etc. and a filled base map.

projection The map projection to be used. Different map projections are possible
through the mapproj package. See?mapproject for extensive details
and information on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for
use with the projection argument. This argument is optional only in the
sense that certain projections do not require additional parameters. If
a projection does require additional parameters, these must be given in
the parameters argument.

orientation From the mapproj package. An optional vector c(latitude,longitude,ro-
tation) which describes where the ”North Pole” should be when com-
puting the projection. Normally this is c(90,0), which is appropriate for
cylindrical and conic projections. For a planar projection, you should set
it to the desired point of tangency. The third value is a clockwise rotation
(in degrees), which defaults to the midrange of the longitude coordinates
in the map.

166

19 openair back trajectory functions

clust <- trajCluster(traj, method = "Angle", n.cluster= 6, col = "Set2",

map.cols = openColours("Paired", 10))

lon

la
t

●
●●●

●
●

●

●

●●

−38−35
−30

−25
−20−15−10−5 0 5 11

43

50

55

60

65

69

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

● ● ● ● ●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

12%

22.9%

34.3%

9.6%

9.7%

11.5%
cluster

C1
C2
C3
C4
C5
C6

FIGURE 19.11 The 6-cluster solution to back trajectories calculated for the London North
Kensington site for 2011 showing the mean trajectory for each cluster.

by.type The percentage of the total number of trajectories is given for all data by
default. Setting by.type = TRUEwill make each panel add up to 100.

origin If TRUE a filled circle dot is shown to mark the receptor point.

... Other graphical parameters passed ontolattice:levelplotandcutData.
Similarly, common axis and title labelling options (such as xlab, ylab,
main) are passed to levelplot via quickText to handle routine format-
ting.

As an example we will consider back trajectories for London in 2011.
First, the back trajectory data for London is imported together with the air pollution

data for the North Kensington site (KC1).

traj <- importTraj(site = "london", year = 2011)

kc1 <- importKCL(site = "kc1", year = 2011)

The clusters are straightforward to calculate. In this case the back trajectory data
(traj) is supplied and the angle-based distance matrix is used. Furthermore, we
choose to calculate 6 clusters and choose a specific colour scheme. In this case we
read the output from trajCluster into a variable clust so that the results can be
post-processed.
clust returns all the back trajectory information together with the cluster (as a

character). This data can now be used together with other data to analyse results
further. However, first it is possible to show all trajectories coloured by cluster, although
for a year of data there is significant overlap and it is difficult to tell them apart.

167

19 openair back trajectory functions

trajPlot(clust$data, group = "cluster")

A useful way in which to see where these air masses come from by trajectory is to
produce a frequency plot by cluster. Such a plot (not shown, but code below) provides
a good indication of the spread of the different trajectory clusters as well as providing
an indication of where air masses spend most of their time. For the London 2011 data
it can be seen cluster 1 is dominated by air from the European mainland to the south.

trajLevel(clust$data, type = "cluster", col = "increment", border = NA)

Perhaps more useful is to merge the cluster data with measurement data. In this
case the data at North Kensington site are used. Note that in merging these two data
frames it is not necessary to retain all 96 back trajectory hours and for this reason we
extract only the first hour.

kc1 <- merge(kc1, subset(clust$data, hour.inc == 0), by = "date")

Now kc1 contains air pollution data identified by cluster. The size of this data frame
is about a third of the original size because back trajectories are only run every 3 hours.

The numbers of each cluster are given by:

table(kc1[["cluster"]])

##

C1 C2 C3 C4 C5 C6

347 661 989 277 280 333

i.e. is dominated by clusters 3 and 2 from west and south-west (Atlantic).
Now it is possible to analyse the concentration data according to the cluster. There

are numerous types of analysis that can be carried out with these results, which will
depend on what the aims of the analysis are in the first place. However, perhaps
one of the first things to consider is how the concentrations vary by cluster. As the
summary results below show, there are distinctly different mean concentrations of
most pollutants by cluster. For example, clusters 1 and 6 are associated with much
higher concentrations of PM10— approximately double that of other clusters. Both of
these clusters originate from continental Europe. Cluster 5 is also relatively high, which
tends to come from the rest of the UK. Other clues concerning the types of air-mass can
be gained from the mean pressure. For example, cluster 5 is associated with the highest
pressure (1014 kPa), and as is seen in Figure 19.11 the shape of the line for cluster 5 is
consistent with air-masses associated with a high pressure system (a clockwise-type
sweep).

168

19 openair back trajectory functions

trendLevel(kc1, pollutant = "v2.5", type = "cluster", layout = c(6, 1),

cols = "increment")

month

ho
ur

00
03
06
09
12
15
18
21

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

C1

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

C2

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

C3

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

C4

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

C5

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

C6 mean

v2.5
0

5

10

15

20

FIGURE 19.12 Some of the temporal characteristics of the volatile PM2.5 component plotted by
month and hour of the day and by cluster for the London North Kensington site for 2011.

library(dplyr)

group_by(kc1, cluster) %>%

summarise_if(is.numeric, mean, na.rm = TRUE)

A tibble: 6 x 23

cluster nox no2 o3 so2 co pm10_raw pm10 pm25 v2.5 nv2.5

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 C1 89.9 51.4 32.9 3.34 0.388 32.3 35.8 31.3 8.02 23.3

2 C2 40.9 30.9 39.6 1.25 0.223 18.1 17.7 11.6 3.13 8.42

3 C3 47.2 32.3 39.8 1.72 0.189 19.4 17.9 11.3 2.80 8.46

4 C4 44.1 30.6 40.1 1.73 0.188 19.8 17.6 11.0 2.17 8.82

5 C5 57.0 39.2 41.4 2.12 0.226 24.4 25.5 16.5 4.50 12.0

6 C6 64.9 42.4 46.4 2.84 0.290 31.7 35.7 29.7 7.57 22.1

... with 12 more variables: receptor <dbl>, year <dbl>, month <dbl>,

day <dbl>, hour <dbl>, hour.inc <dbl>, lat <dbl>, lon <dbl>, height <dbl>,

pressure <dbl>, traj_len <dbl>, len <dbl>

Simple plots can be generated from these results too. For example, it is easy to
consider the temporal nature of the volatile component of PM2.5 concentrations (v2.5
in the kc1 data frame). Figure 19.12 for example shows how the concentration of the
volatile component of PM2.5 concentrations varies by cluster by plotting the hour of
day-month variation. It is clear from Figure 19.12 that the clusters associated with the
highest volatile PM2.5 concentrations are clusters 1 and 6 (European origin) and that
these concentrations peak during spring. There is less data to see clearly what is going
on with cluster 5. Nevertheless, the cluster analysis has clearly separated different air
mass characteristics which allows for more refined analysis of different air-mass types.

Similarly, as considered in Section 8, the timeVariation function can also be used
to consider the temporal components.

Another useful plot to consider is timeProp, which can show how the concentration
of a pollutant is comprised. In this case it is useful to plot the time series of PM2.5 and
show how much of the concentration is contributed to by each cluster. Such a plot is
shown in Figure 19.13. It is now easy to see for example that during the spring months
many of the high concentration events were due to clusters 1 and 6, which correspond
to European origin air-masses as shown in Figure 19.11.

169

20 Model evaluation — the modStats function

timeProp(kc1, pollutant="pm25", avg.time = "day", proportion = "cluster",

col="Set2", key.position = "top", key.columns = 6)

contribution weighted by mean
date

P
M

2.
5

20

40

60

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

cluster
C6 C5 C4 C3 C2 C1

FIGURE 19.13 Temporal variation in daily PM2.5 concentrations at the North Kensington site
show by contribution of each cluster.

20 Model evaluation — the modStats function

20.1 Purpose

The modStats function provides key model evaluation statistics for comparing models
against measurements and models against other models.

There are a very wide range of evaluation statistics that can be used to assess model
performance. There is, however, no single statistic that encapsulates all aspects of
interest. For this reason it is useful to consider several performance statistics and also
to understand the sort of information or insight they might provide.

In the following definitions,Oi represents the ith observed value andMi represents
the ith modelled value for a total of n observations.

Fraction of predictions within a factor or two, FAC2

The fraction of modelled values within a factor of two of the observed values are the
fraction of model predictions that satisfy:

0.5 ≤ Mi
Oi

≤ 2.0 (17)

Mean bias,MB

The mean bias provides a good indication of the mean over or under estimate of
predictions. Mean bias in the same units as the quantities being considered.

MB = 1
n

N
∑
i=1

Mi − Oi (18)

Mean Gross Error,MGE

The mean gross error provides a good indication of the mean error regardless of
whether it is an over or under estimate. Mean gross error is in the same units as the

170

20 Model evaluation — the modStats function

quantities being considered.

MGE = 1
n

N
∑
i=1

|Mi − Oi| (19)

Normalised mean bias, NMB

The normalised mean bias is useful for comparing pollutants that cover different
concentration scales and the mean bias is normalised by dividing by the observed
concentration.

NMB =

n
∑
i=1

Mi − Oi

n
∑
i=1

Oi

(20)

Normalised mean gross error, NMGE

The normalised mean gross error further ignores whether a prediction is an over or
under estimate.

NMGE =

n
∑
i=1

|Mi − Oi|

n
∑
i=1

Oi

(21)

Root mean squared error, RMSE

The RMSE is a commonly used statistic that provides a good overall measure of how
close modelled values are to predicted values.

RMSE =
⎛
⎜
⎜
⎝

n
∑
i=1
(Mi − Oi)2

n

⎞
⎟
⎟
⎠

1/2

(22)

Correlation coefficient, r

The (Pearson) correlation coefficient is a measure of the strength of the linear relation-
ship between two variables. If there is perfect linear relationship with positive slope
between the two variables, r = 1. If there is a perfect linear relationship with negative
slope between the two variables r =−1. A correlation coefficient of 0 means that there
is no linear relationship between the variables. Note that modStats accepts an option
method, which can be set to “kendall” and “spearman” for alternative calculations of
r.

r = 1
(n − 1)

n
∑
i=1

(
Mi −M
σM

) (
Oi − O
σO

) (23)

171

20 Model evaluation — the modStats function

Coefficient of Efficiency, COE

The Coefficient of Efficiency based on Legates and McCabe (2012) and Legates and Mc-
Cabe Jr (1999). There have been many suggestions for measuring model performance
over the years, but theCOE is a simple formulation which is easy to interpret.

A perfect model has aCOE = 1. As noted by Legates and McCabe although theCOE
has no lower bound, a value ofCOE = 0.0 has a fundamental meaning. It implies that
the model is no more able to predict the observed values than does the observed mean.
Therefore, since the model can explain no more of the variation in the observed values
than can the observed mean, such a model can have no predictive advantage.

For negative values ofCOE, the model is less effective than the observed mean in
predicting the variation in the observations.

COE = 1.0 −

n
∑
i=1

|Mi − Oi|

n
∑
i=1

|Oi − O|
(24)

Index of Agreement, IOA

The Index of Agreement, IOA is commonly used in model evaluation (Willmott et al.
2011). It spans between −1 and +1 with values approaching +1 representing better
model performance. An IOA of 0.5, for example, indicates that the sum of the error-
magnitudes is one half of the sum of the observed-deviation magnitudes. When IOA
= 0.0, it signifies that the sum of the magnitudes of the errors and the sum of the
observed-deviation magnitudes are equivalent. When IOA = −0.5, it indicates that
the sum of the error-magnitudes is twice the sum of the perfect model-deviation and
observed-deviation magnitudes. Values of IOA near−1.0 can mean that the model-
estimated deviations aboutO are poor estimates of the observed deviations; but, they
also can mean that there simply is little observed variability — so some caution is
needed when the IOA approaches−1. It is defined as (with c = 2):

IOA =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1.0 −

n
∑
i=1

|Mi − Oi|

c
n
∑
i=1

|Oi − O|
,when

n
∑
i=1

|Mi − Oi| ≤ c
n
∑
i=1

|Oi − O|

c
n
∑
i=1

|Oi − O|

n
∑
i=1

|Mi − Oi|
− 1.0, when

n
∑
i=1

|Mi − Oi| > c
n
∑
i=1

|Oi − O|

(25)

20.2 Options available

mydata A data frame.

mod Name of a variable in mydata that respresents modelled values.

obs Name of a variable in mydata that respresents measured values.

172

20 Model evaluation — the modStats function

statistic The statistic to be calculated. See details below for a description of each.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce statistics using the entire data. type can be
one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
sets of statistics — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
More than one type can be considered e.g. type = c("season", "weekday")

will produce statistics split by season and day of the week.

rank.name Simple model ranking can be carried out ifrank.name is supplied. rank.name
will generally refer to a column representing a model name, which is to
ranked. The ranking is based the COE performance, as that indicator is
arguably the best single model performance indicator available.

... Other aruments to be passed tocutDatae.g. hemisphere = "southern"

20.3 Example of use

The function can be called very simply and only requires two numeric fields to compare.
To show how the function works, some synthetic data will be generated for 5 models.

observations; 100 random numbers

set.seed(10)

obs <- 100 * runif(100)

mod1 <- data.frame(obs, mod = obs + 10, model = "model 1")

mod2 <- data.frame(obs, mod = obs + 20 * rnorm(100), model = "model 2")

mod3 <- data.frame(obs, mod = obs - 10 * rnorm(100), model = "model 3")

mod4 <- data.frame(obs, mod = obs / 2 + 10 * rnorm(100), model = "model 4")

mod5 <- data.frame(obs, mod = obs * 1.5 + 3 * rnorm(100), model = "model 5")

modData <- rbind(mod1, mod2, mod3, mod4, mod5)

head(modData)

obs mod model

1 50.7 61 model 1

2 30.7 41 model 1

3 42.7 53 model 1

4 69.3 79 model 1

5 8.5 19 model 1

6 22.5 33 model 1

We now have a data frame with observations and predictions for 5 models. The
evaluation of the statistics is given by:

modStats(modData, obs = "obs", mod = "mod", type = "model")

model n FAC2 MB MGE NMB NMGE RMSE r COE IOA

1 model 1 100 0.89 10.00 10.0 0.225 0.22 10.0 1.00 0.5383 0.77

2 model 2 100 0.79 0.92 16.6 0.021 0.37 19.3 0.83 0.2339 0.62

3 model 3 100 0.88 1.01 7.9 0.023 0.18 9.5 0.94 0.6358 0.82

4 model 4 100 0.56 -20.60 21.9 -0.463 0.49 25.8 0.81 -0.0093 0.50

5 model 5 100 0.96 22.52 22.6 0.506 0.51 26.1 1.00 -0.0420 0.48

173

20 Model evaluation — the modStats function

It is possible to rank the statistics based on the Coefficient of Efficiency, which is a
good general indicator of model performance.

modStats(modData, obs = "obs", mod = "mod", type = "model", rank.name = "model")

model n FAC2 MB MGE NMB NMGE RMSE r COE IOA

3 model 3 100 0.88 1.01 7.9 0.023 0.18 9.5 0.94 0.6358 0.82

1 model 1 100 0.89 10.00 10.0 0.225 0.22 10.0 1.00 0.5383 0.77

2 model 2 100 0.79 0.92 16.6 0.021 0.37 19.3 0.83 0.2339 0.62

4 model 4 100 0.56 -20.60 21.9 -0.463 0.49 25.8 0.81 -0.0093 0.50

5 model 5 100 0.96 22.52 22.6 0.506 0.51 26.1 1.00 -0.0420 0.48

The modStats function is however much more flexible than indicated above. While
it is useful to calculate model evaluation statistics in a straightforward way it can be
much more informative to consider the statistics split by different periods.

Data have been assembled from a Defra model evaluation exercise which consists
of hourly O3 predictions at 15 receptor points around the UK for 2006. The aim here
is not to identify a particular model that is ‘best’ and for this reason the models are
simply referred to as ‘model 1’, ‘model 2’ and so on. We will aim to make the data more
widely available. However, data set has this form:

load("~/My Drive/openair/Data/modelData.RData")

head(modTest)

site date o3 mod group

1 Aston.Hill 2006-01-01 00:00:00 NA NA model 1

2 Aston.Hill 2006-01-01 01:00:00 74 65 model 1

3 Aston.Hill 2006-01-01 02:00:00 72 65 model 1

4 Aston.Hill 2006-01-01 03:00:00 72 64 model 1

5 Aston.Hill 2006-01-01 04:00:00 70 65 model 1

6 Aston.Hill 2006-01-01 05:00:00 66 66 model 1

There are columns representing the receptor location (site), the date, measured
values (o3), model predictions (mod) and the model itself (group). There are numerous
ways in which the statistics can be calculated. However, of interest here is how the
models perform at a single receptor by season. The seasonal nature of O3 is a very
important characteristic and it is worth considering in more detail. The statistics
are easy enough to calculate as shown below. In this example a subset of the data is
selected to consider only the Harwell site. Second, the type option is used to split the
calculations by season and model. Finally the statistics are grouped by the IOA for
each season. It is now very easy how model performance changes by season and which
models perform best in each season.

174

21 Model evaluation — the TaylorDiagram function

options(digits = 2) ## don't display too many decimal places

modStats(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

type = c("season", "group"), rank = "group")

A tibble: 36 x 12

Groups: season [4]

season group n FAC2 MB MGE NMB NMGE RMSE r COE

<ord> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 sprin~ mode~ 1905 0.875 8.58 16.5 0.137 0.263 21.9 0.576 0.0747

2 sprin~ mode~ 1905 0.876 -2.04 16.8 -0.0325 0.268 21.8 0.452 0.0584

3 sprin~ mode~ 1905 0.872 11.9 17.7 0.190 0.282 23.7 0.519 0.00818

4 sprin~ mode~ 1905 0.885 4.98 18.1 0.0793 0.289 23.9 0.361 -0.0151

5 sprin~ mode~ 1905 0.870 10.8 19.5 0.172 0.311 24.0 0.588 -0.0940

6 sprin~ mode~ 1825 0.821 7.79 20.0 0.123 0.317 25.8 0.480 -0.118

7 sprin~ mode~ 1905 0.786 -13.7 21.4 -0.218 0.340 26.1 0.531 -0.195

8 sprin~ mode~ 1905 0.732 -13.4 24.3 -0.213 0.388 29.8 0.312 -0.362

9 sprin~ mode~ 1905 0.743 1.01 24.9 0.0161 0.396 32.8 0.264 -0.392

10 summe~ mode~ 2002 0.918 3.83 15.5 0.0632 0.256 20.9 0.750 0.317

... with 26 more rows, and 1 more variable: IOA <dbl>

Note that it is possible to read the results of the modStats function into a data frame,
which then allows the results to be plotted. This is generally a good idea when there is
a lot of numeric data to consider and plots will convey the information better.

The modStats function is much more flexible than indicated above and can be used
in lots of interesting ways. The type option in particular makes it possible to split the
statistics in numerous ways. For example, to summarise the performance of models
by site, model and day of the week:

modStats(modStats, obs = "o3", mod = "mod",

type = c("site", "weekday", "group"), rank = "group")

Similarly, if other data are available e.g. meteorological data or other pollutant
species then these variables can also be used to test models against ranges in their
values. This capability is potentially very useful because it allows for a much more
probing analysis into model evaluation. For example, with wind speed and direction
it is easy to consider how model performance varies by wind speed intervals or wind
sectors, both of which could reveal important performance characteristics.

21 Model evaluation — the TaylorDiagram function

21.1 Purpose

The Taylor Diagram is one of the more useful methods for evaluating model per-
formance. Details of the diagram can be found at http://www-pcmdi.llnl.gov/
about/staff/Taylor/CV/Taylor_diagram_primer.pdf and in Taylor (2001). The
diagram provides a way of showing how three complementary model performance
statistics vary simultaneously. These statistics are the correlation coefficient R, the
standard deviation (sigma) and the (centred) root-mean-square error. These three
statistics can be plotted on one (2D) graph because of the way they are related to one
another which can be represented through the Law of Cosines.

Theopenairversion of the Taylor Diagram has several enhancements that increase its
flexibility. In particular, the straightforward way of producing conditioning plots should
prove valuable under many circumstances (using the type option). Many examples of
Taylor Diagrams focus on model-observation comparisons for several models using
all the available data. However, more insight can be gained into model performance

175

http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.pdf
http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.pdf

21 Model evaluation — the TaylorDiagram function

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group")

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30
0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●● ●●

●

●
● ●

● group

●
●
●
●
●
●
●
●
●

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9

FIGURE 21.1 An example of the use of the TaylorDiagram function.

by partitioning the data in various ways e.g. by season, daylight/nighttime, day of the
week, by levels of a numeric variable e.g. wind speed or by land-use type etc.

We first show a diagram and then pick apart the different components to understand
how to interpret it. The diagram can look overly complex but once it is understood how
to interpret the three main characteristics it becomes much easier to understand. A
typical diagram is shown in Figure 21.1 for nine anonymised models used for predicting
hourly O3 concentrations at 15 sites around the UK.

The plots shown in Figure 21.2 break the Taylor Diagrams into three components
to aid interpretation. The first plot (top left) highlights the comparison of variability
in for each model compared with the measurements. The variability is represented
by the standard deviation of the observed and modelled values. The plot shows that
the observed variability (given by the standard deviation) is about 27 (μgm−3) and is
marked as ‘observed’ on the x-axis. The magnitude of the variability is measured as
the radial distance from the origin of the plot (the red line with the arrow shows the
standard deviation for model g, which is about 25 μgm−3). To aid interpretation the
radial dashed line is shown from the ‘observed’ point. Each model is shown in this
case by the position of the letters a to i. On this basis it can be seen that models 1, a, b
have more variability than the measurements (because they extend beyond the dashed
line), whereas the others have less variability than the measurements. Models a and b
are also closed to the dashed line and therefore have the closest variability compared
with the observations.

The next statistic to consider is the correlation coefficient, R shown by the top-right
Figure in Figure 21.2. This is shown on the arc and points that lie closest to the x-axis
have the highest correlation. The grey lines help to show this specific correlation
coefficients. The red arc showsR=0.7 for model g. The best performing models with
the highest R are models b and gwith correlation coefficients around 0.7. Two models
stand out as having much worse correlations with the observations: models e and i
(values of around 0.4).

Finally, the lower plot in Figure 21.2 highlights the centred root-mean square error

176

21 Model evaluation — the TaylorDiagram function

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

SD

(A) Taylor Diagram highlighting the variation in stan-
dard deviation.

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

(B) Taylor Diagram highlighting the variation in cor-
relation coefficient.

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

(C) Taylor Diagram highlighting the variation in the
centred RMS error.

FIGURE 21.2 Taylor Diagrams broken down to highlight how to interpret the three main statistics.
The red line/arrow indicate how to read interpret each of the three statistics.

(RMS). It is centred because the mean values of the data (observations and predictions)
are subtracted first. The concentric dashed lines emanating from the ‘observed’ point
show the value of the RMS error — so points furthest from the ‘observed’ value are the
worst performing models because they have the highest RMS errors. On this basis,
model g has the lowest error of about 20 μgm−3, shown again by the red line. Models e
and i are considerably worse because they have RMS errors of around 30 μgm−3.

So which model is best? Taken as a whole it is probably model g because it has
reasonably similar variability compared with the observations, the highest correlation
and the least RMS error. However, models f and b also look to be good. Perhaps it is
easier to conclude that models e and i are not good ….

Note that in cases where there is a column ‘site’ it makes sense to usetype = "site"

to ensure that the statistics are calculated on a per site basis and each panel represents
a single site.

177

21 Model evaluation — the TaylorDiagram function

21.2 Options available

mydata A data frame minimally containing a column of observations and a col-
umn of predictions.

obs A column of observations with which the predictions (mod) will be com-
pared.

mod A column of model predictions. Note, mod can be of length 2 i.e. two
lots of model predictions. If two sets of predictions are are present e.g.
mod = c("base", "revised"), then arrows are shown on the Taylor
Diagram which show the change in model performance in going from
the first to the second. This is useful where, for example, there is interest
in comparing how one model run compares with another using different
assumptions e.g. input data or model set up. See examples below.

group The group column is used to differentiate between different models and
can be a factor or character. The total number of models compared will
be equal to the number of unique values of group.
group can also be of length two e.g. group = c("model", "site"). In
this case all model-site combinations will be shown but they will only be
differentiated by colour/symbol by the first grouping variable (”model” in
this case). In essence the plot removes the differentiation by the second
grouping variable. Because there will be different values of obs for each
group, normalise = TRUE should be used.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.
Note that often it will make sense to use type = "site"when multiple
sites are available. This will ensure that each panel contains data specific
to an individual site.

normalise Should the data be normalised by dividing the standard deviation of the
observations? The statistics can be normalised (and non-dimensionalised)
by dividing both the RMS difference and the standard deviation of the
mod values by the standard deviation of the observations (obs). In this
case the “observed” point is plotted on the x-axis at unit distance from
the origin. This makes it possible to plot statistics for different species
(maybe with different units) on the same plot. The normalisation is done
by each group/type combination.

178

21 Model evaluation — the TaylorDiagram function

cols Colours to be used for plotting. Useful options for categorical data are
avilable from RColorBrewer colours — see the openair openColours
function for more details. Useful schemes include “Accent”, “Dark2”,
“Paired”, “Pastel1”, “Pastel2”, “Set1”, “Set2”, “Set3” — but see ?brewer.pal
for the maximum useful colours in each. For user defined the user can
supply a list of colour names recognised by R (type colours() to see
the full list). An example would be cols = c("yellow", "green",

"blue").

rms.col Colour for centred-RMS lines and text.

cor.col Colour for correlation coefficient lines and text.

arrow.lwd Width of arrow used when used for comparing two model outputs.

annotate Annotation shown for RMS error.

key Should the key be shown?

key.title Title for the key.

key.columns Number of columns to be used in the key. With many pollutants a single
column can make to key too wide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

key.pos Position of the key e.g. “top”, “bottom”, “left” and “right”. See details in
lattice:xyplot for more details about finer control.

strip Should a strip be shown?

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters are passed ontocutDataandlattice:xyplot.
For example,TaylorDiagrampasses the optionhemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, common graphical
parameters, such as layout for panel arrangement and pch and cex for
plot symbol type and size, are passed on to xyplot. Most are passed
unmodified, although there are some special cases where openairmay
locally manage this process. For example, common axis and title labelling
options (such as xlab, ylab, main) are passed via quickText to handle
routine formatting.

21.3 Example of use

The example used here carries on from the previous section using data from a Defra
model evaluation exercise. As mentioned previously, the use of the type option offers
enormous flexibility for comparing models. However, we will only focus on the sea-
sonal evaluation of the models. In the call below, group is the column that identified
the model and type is the conditioning variable that produces in this case four panels
— one for each season. Note that in this case we focus on a single site.

Figure 21.3 contains a lot of useful information. Consider the summertime compari-
son first. All models tend to underestimate the variability of O3 concentrations because

179

21 Model evaluation — the TaylorDiagram function

select a single site

LH <- subset(modTest, site == "Lullington.Heath")

TaylorDiagram(LH, obs = "o3", mod = "mod", group = "group", type = "season")

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●
●●

●

●

●

●●

●

spring (MAM)

10 20 30 40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●●
●

●
●

●
●

●

●

summer (JJA)

10 20 30 40
0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●

●

●

●
●

●
●

●

●

autumn (SON)

10

20

30

40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●
● ●

●
●

●

●
●

●

winter (DJF)

group

●
●
●
●
●
●
●
●
●

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9

FIGURE 21.3 Use of the TaylorDiagam function to show model performance for 9 models used
to predict O3 concentrations at the Lullington Heath site.

they all lies withing the black dashed line. However, models 7 and 9 are close to the
observed variability. The general underestimate of the variability for summertime con-
ditions might reflect that the models do not adequately capture regional O3 episodes
when concentrations are high. Models 7 and 8 do best in terms of high correlation with
the measurements (around 0.8) and lowest RMS error (around 20–22 μgm−3). Models
3, 5 and 6 tend to do worse on all three statistics during the summer.

By contrast, during wintertime conditions models 1 and 3 are clearly best. From an
evaluation perspective it would be useful to understand why some models are better
for wintertime conditions and others better in summer and this is clearly something
that could be investigated further.

There are many other useful comparisons that can be undertaken easily. A few of
these are shown below, but not plotted.

180

22 Model evaluation — the conditionalQuantile and conditionalEval functions

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = c("group", "site"),

normalise = TRUE, cex = 1, pch = c(15:19, 15:18))

standard deviation (normalised)

st
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
is

ed
)

0.5

1.0

1.5

0.5 1.0 1.5
0

centred

RMS error

0.5

centred

RMS error

1

centred

RMS error

1.5

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

●
observed

●
●

●

● ●
●●

●● ●
●●●

●

●

●

●

●

●

●● ●

●

●

● ●●

●

●

●

●●

●

●

● ●●

●
●

●
● ●

●

●

●

group

●

●

●

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9

FIGURE 21.4 Use of the TaylorDiagam function to show model performance for 9 models used
for all sites.

by receptor comparison

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group", type = "site")

by month comparison for a SINGLE site

TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = "month")

By season AND daylight/nighttime

TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = c("season", "daylight"))

It is also possible to combine different groups of model results. For example, rather
than plot how the models perform at a single site it can be useful to show how they
compare at all sites. To do this it is necessary to normalise the data because there will
be different values of the observed variable across different sites. In this case we can
supply the option group = c("group", "site"). This will show the variation by
model for all sites. The results are shown in Figure 21.4. These results show that in
general models tend to predict in similalry good (or bad) ways across all sites as shown
by the grouping of points on Figure 21.4.

22 Model evaluation — the conditionalQuantile and

conditionalEval functions

22.1 Purpose

Conditional quantiles are a very useful way of considering model performance against
observations for continuous measurements Wilks 2005. The conditional quantile plot

181

22 Model evaluation — the conditionalQuantile and conditionalEval functions

splits the data into evenly spaced bins. For each predicted value bin e.g. from 0 to
10 μgm−3 the corresponding values of the observations are identified and the median,
25/75th and 10/90 percentile (quantile) calculated for that bin. The data are plotted
to show how these values vary across all bins. For a time series of observations and
predictions that agree precisely the median value of the predictions will equal that for
the observations for each bin.

The conditional quantile plot differs from the quantile-quantile plot (Q-Q plot) that
is often used to compare observations and predictions. A Q-Q plot separately considers
the distributions of observations and predictions, whereas the conditional quantile
uses the corresponding observations for a particular interval in the predictions. Take
as an example two time series, the first a series of real observations and the second
a lagged time series of the same observations representing the predictions. These
two time series will have identical (or very nearly identical) distributions (e.g. same
median, minimum and maximum). A Q-Q plot would show a straight line showing
perfect agreement, whereas the conditional quantile will not. This is because in any
interval of the predictions the corresponding observations now have different values.

Plotting the data in this way shows how well predictions agree with observations
and can help reveal many useful characteristics of how well model predictions agree
with observations — across the full distribution of values. A single plot can therefore
convey a considerable amount of information concerning model performance. The
basic function is considerably enhanced by allowing flexible conditioning easily e.g. to
evaluate model performance by season, day of the week and so on, as in other openair
functions.

22.2 Options available

mydata A data frame containing the field obs and mod representing observed and
modelled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.
Type can be up length two e.g. type = c("season", "weekday")will
produce a 2x2 plot split by season and day of the week. Note, when two
types are provided the first forms the columns and the second the rows.

bins Number of bins to be used in calculating the different quantile levels.

min.bin The minimum number of points required for the estimates of the 25/75th
and 10/90th percentiles.

182

22 Model evaluation — the conditionalQuantile and conditionalEval functions

xlab label for the x-axis, by default “predicted value”.

ylab label for the y-axis, by default “observed value”.

col Colours to be used for plotting the uncertainty bands and median line.
Must be of length 5 or more.

key.columns Number of columns to be used in the key.

key.position Location of the key e.g. “top”, “bottom”, “right”, “left”. See lattice
xyplot for more details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will
automatically try and format pollutant names and units properly e.g. by
subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto cutData and lattice:xyplot.
For example, conditionalQuantile passes the option hemisphere =

"southern" on to cutData to provide southern (rather than default
northern) hemisphere handling of type = "season". Similarly, com-
mon axis and title labelling options (such asxlab, ylab, main) are passed
to xyplot via quickText to handle routine formatting.

22.3 Example of use

To make things more interesting we will use data from a model evaluation exercise
organised by Defra in 2010/2011. A large number of models were evaluated as part of
the evaluation but we only consider hourly ozone predictions from the CMAQ model
being used at King’s College London.

First the data are loaded:

load("~/My Drive/openair/Data/CMAQozone.RData")

class(CMAQ.KCL$date) <- c("POSIXct", "POSIXt")

head(CMAQ.KCL)

site date o3 rollingO3Meas mod rollingO3Mod group

1 Aston.Hill 2006-01-01 00:00:00 NA NA 93 NA CMAQ.KCL

2 Aston.Hill 2006-01-01 01:00:00 74 NA 92 NA CMAQ.KCL

3 Aston.Hill 2006-01-01 02:00:00 72 NA 92 NA CMAQ.KCL

4 Aston.Hill 2006-01-01 03:00:00 72 NA 92 NA CMAQ.KCL

5 Aston.Hill 2006-01-01 04:00:00 70 NA 92 NA CMAQ.KCL

6 Aston.Hill 2006-01-01 05:00:00 66 NA 92 NA CMAQ.KCL

The data consists of hourly observations of O3 in μg m−3 at 15 rural O3 sites in the
UK together with predicted values.10 First of all we consider O3 predictions across all
sites to help illustrate the purpose of the function. The results are shown in Figure 22.1.
An explanation of the Figure is given in its caption.

A more informative analysis can be undertaken by considering conditional quantiles
separately by site, which is easily done using the type option. The results are shown in
Figure 22.2. It is now easier to see where the model performs best and how it varies by
site type. For example, at a remote site in Scotland like Strath Vaich it is clear that the
model does not capture either the lowest or highest O3 concentrations very well.

As with other openair functions, the ability to consider conditioning can really help
with interpretation. For example, what do the conditional quantiles at Lullington
Heath (in south-east England) look like by season? This is easily done by subsetting the
10We thank Dr Sean Beevers and Dr Nutthida Kitwiroon for access to these data.

183

22 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod")

predicted value

50 100 150 200 250

50

100

150

200

250

0

10000

20000

30000

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

FIGURE 22.1 Example of the use of conditional quantiles applied to the KCL CMAQ model
for 15 rural O3 monitoring sites in 2006, for hourly data. The blue line shows the results for a
perfect model. In this case the observations cover a range from 0 to 270 μgm−3. The red line
shows the median values of the predictions and corresponding observations. The maximum
predicted value is 125 μgm−3, somewhat less than the maximum observed value. The shading
shows the predicted quantile intervals i.e. the 25/75th and the 10/90th. A perfect model would
lie on the blue line and have a very narrow spread. There is still some spread because even for
a perfect model a specific quantile interval will contain a range of values. However, for the
number of bins used in this plot the spread will be very narrow. Finally, the histogram shows
the counts of predicted values.

data to select that site and setting type = "season", as shown in Figure 22.3. These
results show that winter predictions have good coverage i.e. with width of the blue
‘perfect model’ line is the same as the observations. However, the predictions tend
to be somewhat lower than observations for most concentrations (the median line is
below the blue line) — and the width of the 10/75th and 10/90th percentiles is quite
broad. However, the area where the model is less good is in summer and autumn
because the predictions have low coverage (the red line only covers less than half of
the observation line and the width of the percentiles is wide).

Of course it is also easy to plot by hour of the day, day of the week, by daylight/night-
time and so on — easily. All these approaches can help better understand why a model
does not perform very well rather than just quantifying its performance. Also, these
types of analysis are particularly useful when more than one model is involved in a
comparison as in the recent Defra model evaluation exercise, which we will come back
to later when some of the results are published.

There are numerous ways in which model performance can be assessed, including
the use of common statistical measures described in Section 20. These approaches
are very useful for comparing models against observations and other models. How-
ever, model developers would generally like to know why a model may have poor
performance under some situations. This is a much more challenging issue to address.
However, useful information can be gained by considering how other variables vary
simultaneously.

The conditionalEval function provides information on how other variables vary
across the same intervals as shown on the conditional quantile plot. There are two types
of variable that can be considered by setting the value of statistic. First, statistic

184

22 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod", type = "site")

predicted value

50

100

150

200

250

Aston.Hill

50 100 150 200 250

Bottesford Bush.Estate

50 100 150 200 250

0

1000

2000

3000

4000

Eskdalemuir

50

100

150

200

250

Glazebury High.Muffles Harwell

0

1000

2000

3000

4000

Ladybower

50

100

150

200

250

Lullington.Heath Lough.Navar Rochester

0

1000

2000

3000

4000

Sibton

50 100 150 200 250

50

100

150

200

250

Strath.Vaich Yarner.Wood

50 100 150 200 250

0

1000

2000

3000

4000

Wicken.Fen

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

FIGURE 22.2 Conditional quantiles by site for 15 O3 monitoring sites in the UK.

can be another variable in the data frame. In this case the plot will show the different
proportions of statistic across the range of predictions. For example statistic =

"season" will show for each interval of mod the proportion of predictions that were
spring, summer, autumn or winter. This is useful because if model performance is
worse for example at high concentrations of mod then knowing that these tend to
occur during a particular season etc. can be very helpful when trying to understand
why a model fails. See Section 4 for more details on the types of variable that can
be statistic. Another example would be statistic = "ws" (if wind speed were
available in the data frame), which would then split wind speed into four quantiles and
plot the proportions of each. Again, this would help show whether model performance
in predicting concentrations of O3 for example is related to low to high wind speed
conditions.
conditionalEval can also simultaneously plot the model performance of other

observed/predicted variable pairs according to different model evaluation statistics.
These statistics derive from the Section 20 function and include MB, NMB, r, COE,
MGE, NMGE, RMSE and FAC2. More than one statistic can be supplied e.g. statistic

185

22 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalQuantile(subset(CMAQ.KCL, site == "Lullington.Heath"),

obs = "o3",

mod = "mod", type = "season")

predicted value

50

100

150

200

spring (MAM)

50 100 150 200

0

200

400

600

800

summer (JJA)

50 100 150 200

50

100

150

200

autumn (SON)

0

200

400

600

800

winter (DJF)

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

FIGURE 22.3 Conditional quantiles at Lullington Heath conditioned by season.

= c("NMB", "COE"). Bootstrap samples are taken from the corresponding values of
other variables to be plotted and their statistics with 95% confidence intervals calcu-
lated. In this case, the model performance of other variables is shown across the same
intervals of mod, rather than just the values of single variables. In this second case the
model would need to provide observed/predicted pairs of other variables.

For example, a model may provide predictions of NOx and wind speed (for which
there are also observations available). The conditionalEval function will show how
well these other variables are predicted for the same prediction intervals of the main
variable assessed in the conditional quantile plot e.g. ozone. In this case, values are
supplied to var.obs (observed values for other variables) and var.mod (modelled val-
ues for other variables). For example, to consider how well the model predicts NOx and
wind speed var.obs = c("nox.obs", "ws.obs") and var.mod = c("nox.mod",

"ws.mod")would be supplied (assuming nox.obs, nox.mod, ws.obs, ws.mod are
present in the data frame). The analysis could show for example, when ozone concen-
trations are under-predicted, the model may also be shown to over-predict concentra-
tions of NOx at the same time, or under-predict wind speeds. Such information can
thus help identify the underlying causes of poor model performance. For example, an
under-prediction in wind speed could result in higher surface NOx concentrations and
lower ozone concentrations. Similarly if wind speed predictions were good and NOx
was over predicted it might suggest an over-estimate of NOx emissions. One or more
additional variables can be plotted.

186

22 Model evaluation — the conditionalQuantile and conditionalEval functions

A special case isstatistic = "cluster". In this case a data frame is provided that
contains the cluster calculated by trajCluster and importTraj. Alternatively users
could supply their own pre-calculated clusters. These calculations can be very useful
in showing whether certain back trajectory clusters are associated with poor (or good)
model performance. Note that in the case of statistic = "cluster" there will be
fewer data points used in the analysis compared with the ordinary statistics above
because the trajectories are available for every three hours. Also note that statistic
= "cluster" cannot be used together with the ordinary model evaluation statistics
such as MB. The output will be a bar chart showing the proportion of each interval of
mod by cluster number.

Far more insight can be gained into model performance through conditioning using
type. For example, type = "season"will plot conditional quantiles and the associ-
ated model performance statistics of other variables by each season. type can also be
a factor or character field e.g. representing different models used.

The conditionalEval function has the following options:

mydata A data frame containing the field obs and mod representing observed and
modelled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

var.obs Other variable observations for which statistics should be calculated. Can
be more than length one e.g. var.obs = c("nox.obs", "ws.obs").
Note that including other variables could reduce the number of data avail-
able to plot due to teh need of having non-missing data for all variables.

var.mod Other variable predictions for which statistics should be calculated. Can
be more than length one e.g. var.obs = c("nox.obs", "ws.obs").

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. ”season”, ”year”,
”weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.

bins Number of bins used in conditionalQuantile.

statistic Statistic(s) to be plotted. Can be “MB”, “NMB”, “r”, “COE”, “MGE”,
“NMGE”, “RMSE” and “FAC2”, as described in modStats. When these
statistics are chosen, they are calculated from var.mod and var.mod.
statisticcan also be a value that can be supplied tocutData. For exam-
ple, statistic = "season"will show how model performance varies
by season across the distribution of predictions which might highlight
that at high concentrations of NOx the model tends to underestimate
concentrations and that these periods mostly occur in winter. statistic

187

22 Model evaluation — the conditionalQuantile and conditionalEval functions

can also be another variable in the data frame — see cutData for more
information. A special case is statistic = "cluster" if clusters have
been calculated using trajCluster.

xlab label for the x-axis, by default "predicted value".

ylab label for the y-axis, by default "observed value".

col Colours to be used for plotting the uncertainty bands and median line.
Must be of length 5 or more.

col.var Colours for the additional variables to be compared. See openColours
for more details.

var.names Variable names to be shown on plot for plotting var.obs and var.mod.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will
automatically try and format pollutant names and units properly e.g. by
subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto conditionalQuantile and
cutData. For example,conditionalQuantilepasses the optionhemisphere
= "southern" on to cutData to provide southern (rather than default
northern) hemisphere handling of type = "season". Similarly, com-
mon axis and title labelling options (such asxlab, ylab, main) are passed
to xyplot via quickText to handle routine formatting.

As an example, similar data to that described above from CMAQ have been used as
an example.

A subset of the data for the North Kensington site can be imported as shown below.

condDat <- readRDS(url("https://davidcarslaw.github.io/data/openair/condDat.rds"))

The file contains observed and modelled hourly values for O3, NOx, wind speed,
wind direction, temperature and relative humidity.

head(condDat)

date O3.obs NOx.obs ws.obs wd.obs temp.obs rh.obs O3.mod

5 2006-01-01 00:00:00 10 29 4.6 190 4.9 89 15

10 2006-01-01 01:00:00 15 18 NA 210 5.1 90 17

15 2006-01-01 02:00:00 11 20 2.6 220 4.9 94 18

20 2006-01-01 03:00:00 11 19 3.6 270 5.7 91 18

25 2006-01-01 04:00:00 11 17 3.1 270 5.0 94 18

30 2006-01-01 05:00:00 12 16 3.6 260 5.8 94 15

NOx.mod ws.mod wd.mod temp.mod rh.mod

5 24 2.8 224 3.9 93

10 20 2.6 226 3.9 93

15 18 2.5 236 2.9 99

20 18 2.5 253 2.9 99

25 18 2.2 275 3.9 97

30 21 2.4 285 4.8 94

The conditionalEval function can be used in a straightforward way to provide
information on how predictions depend on another variable in general. In this case
the option statistic can refer to another variable in the data frame to see how the
quality of predictions depend on values of that variable. For example, in Figure 22.4 it
can be seen how wind speed varies across the O3 prediction intervals. At low predicted

188

22 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

statistic = "ws.obs",

col.var = "Set3")

predicted value

20 40 60 80 100

20

40

60

80

100

0

500

1000

1500

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile
median
perfect model

ob
se

rv
ed

 v
al

ue

predicted value

pr
op

or
tio

n

0.2

0.4

0.6

0.8

20 40 60 80 100

ws.obs

ws.obs
ws.obs 0 to 2.57
ws.obs 2.57 to 4.12
ws.obs 4.12 to 5.66
ws.obs 5.66 to 12.3

FIGURE 22.4 Conditional quantiles at for O3 concentrations (left plot). On the right is a plot
showing how the wind speed varies across the O3 prediction intervals.

concentrations of O3 there is a high proportion of low wind speed conditions (0 to 2.57
m s−1). When O3 is predicted to be around 40 ppb the wind speed tends to be higher —
and finally at higher predicted concentrations of O3 the wind speed tends to decrease
again. The important aspect of plotting data in this way is that it can directly relate
the prediction performance to values of other variables, which should help develop a
much better idea of the conditions that matter most. The user can therefore develop a
good feel for the types of conditions where a model performs well or poorly and this
might provide clues as to the underlying reasons for specific model behaviour.

In an extension to Figure 22.4 it is possible to derive information on the simultaneous
model performance of other variables. Figure 22.5 shows the conditional quantile plot
for hourly O3 predictions. This shows among other things that concentrations of O3
tend to be under-predicted for concentrations less than about 20 ppb. The Figure
on the right shows the simultaneous model performance for wind speed and NOx for
the same prediction intervals as shown in the conditional quantile plot. The plot on
the right shows that for low concentrations of predicted O3 there is a tendency for
NOx concentrations to be overestimated (NMB≈0.2 to 0.4) and wind speeds to be
underestimated (NMB≈ −0.2 to−0.3). One possible explanation for this behaviour is
that the meteorological model tends to produce wind speeds that are too low, which
would result in higher concentrations of NOx, which in turn would result in lower
concentrations of O3. Note that it is possible to include more than one statistic, which
would be plotted in a new panel e.g. statistic = c("NMB", "r").

In essence the conditionalEval function provides more information on model
performance that can help better diagnose potential problems. Clearly, there are
many other ways in which the results can be analysed, which will depend on the data
available.

A plot using temperature predictions shows that for most of the range in O3 predic-
tions there is very little bias in temperature (although there is some negative bias in
temperature for very low concentration O3 predictions):

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

var.obs = c("temp.obs", "ws.obs"),

var.mod = c("temp.mod", "ws.mod"),

statistic = "NMB", var.names = c("temperature", "wind speed"))

189

23 The calcFno2 function—estimating primary NO2 fractions

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

var.obs = c("NOx.obs", "ws.obs"),

var.mod = c("NOx.mod", "ws.mod"),

statistic = "NMB",

var.names = c("nox", "wind speed"))

predicted value

20 40 60 80 100

20

40

60

80

100

0

500

1000

1500

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile
median
perfect model

ob
se

rv
ed

 v
al

ue

predicted value
st

at
is

tic

−0.4

−0.2

0.0

0.2

0.4

20 40 60 80 100

NMB

variable
NOx wind speed

FIGURE 22.5 Conditional quantiles at for O3 concentrations (left plot). On the right is the model
performance for wind speed and NOx predictions, which in this case is for the Normalised
Mean Bias.

Finally (but not shown) it can be very useful to consider model performance in terms
of air mass origin. In the example below, trajectories are imported, a cluster analysis
undertaken and then evaluated using conditionalEval.

import trajectories for 2006

traj <- importTraj("london", 2006)

carry out a cluster analysis

cl <- trajCluster(traj, method = "Angle", n.cluster = 5)

merge with orginal model eval data

condDat <- merge(condDat, cl, by = "date")

plot it

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

statistic = "cluster",

col.var = "Set3")

23 The calcFno2 function—estimating primary NO2 fractions

23.1 Purpose

see also

linearRelation

for oxidant

slopes if NOx,

NO2 and O3 are

available

Recent research has shown that emissions of directly emitted (primary) NO2 from road
vehicles have increased and these increases have had important effects on concentra-
tions of NO2 (Carslaw 2005; Carslaw and Beevers 2004; Carslaw and Carslaw 2007).
Many organisations would like to quantify the level of primary NO2 from the analysis
of ambient monitoring data to help with their air quality management responsibilities.
The difficulty is that this is not a straightforward thing to do — it requires some form of

190

23 The calcFno2 function—estimating primary NO2 fractions

modelling. In some situations where NO, NO2 and O3 are measured, it is possible to
derive an estimate of the primary NO2 fraction by considering the gradient in ‘total
oxidant’ defined as NO2 + O3 (Clapp and Jenkin 2001).11 However, where we most
want to estimate primary NO2 (roadside sites), O3 is rarely measured and an alternative
approach must be used. One approach is using a simple constrained chemistry model
described in (Carslaw and Beevers 2005). The calcFno2method is based on this work
but makes a few simplifying assumptions to make it easier to code.

There are several assumptions that users should be aware of when using this function.
First, it is most reliable at estimating f-NO2 when the roadside concentration is much
greater than the background concentration. Second, it is best if the chosen background
site is reasonably close to the roadside site and not greatly affected by local sources
(which it should not be as a background site). The way the calculations work is to try and
distinguish between NO2 that is directly emitted from vehicles and that derived through
the reaction between NO and O3. During summertime periods when concentrations of
NOx are lower these two influences tend to vary linearly with NOx, making it difficult for
the method to separate them. It can often be useful to select only winter months under
these situations (or at least October–March). Therefore, as a simplifying assumption,
the time available for chemical reactions to take place, τ, is set to 60 seconds. We have
tested the method at roadside sites where O3 is also measured and τ = 60 s seems to
provide a reasonably consistent calculation of f-NO2.

Note that in some situations it may be worth filtering the data e.g. by wind direction
to focus on the road itself. In this respect, the polarPlot function described on page
60 can be useful.

23.2 Options available

input A data frame with the following fields. nox andno2 (roadside NOX and
NO2 concentrations), back_nox, back_no2 and back_o3 (hourly back-
ground concentrations of each pollutant). In addition temp (temperature
in degrees Celsius) and cl (cloud cover in Oktas). Note that if temp and
cl are not available, typical means values of 11 deg. C and cloud = 3.5 will
be used.

tau Mixing time scale. It is unlikely the user will need to adjust this. See
details below.

user.fno2 User-supplied f-NO2 fraction e.g. 0.1 is a NO2/NOX ratio of 10 series
and is useful for testing ”what if” questions.

main Title of plot if required.

xlab x-axis label.

... Other graphical parameters send to scatterPlot.

23.3 Example of use

We apply the technique to roadside data at Marylebone Road, with additional data
from a nearby background site at North Kensington and appropriate meteorologi-
cal variables. The data can be downloaded from the openair website (http://www.

11Note that the volume fraction of NO2 of total NOx is termed f-NO2. See the AQEG report for more
information (AQEG 2008).

191

http://www.openair-project.org
http://www.openair-project.org
http://www.openair-project.org
http://www.openair-project.org

23 The calcFno2 function—estimating primary NO2 fractions

openair-project.org), and remember to change the file path below. The code run
is:12

load("~/My Drive/openair/Data/f-no2Data.RData")

check first few lines of the file

head(fno2Data)

date nox no2 back_nox back_no2 back_o3 temp cl wd

1 01/01/1998 00:00 285 39 49 34 1 3.3 2 280

2 01/01/1998 01:00 NA NA 56 35 0 3.3 5 230

3 01/01/1998 02:00 NA NA 41 31 4 4.4 5 190

4 01/01/1998 03:00 493 52 52 33 1 3.9 5 170

5 01/01/1998 04:00 468 78 41 30 3 3.9 5 180

6 01/01/1998 05:00 264 42 36 29 6 3.3 2 190

Now apply the function, and collect the results as shown in Figure 23.1, with addi-
tional options that are sent to scatterPlot.

Note that this is a different way to run a function compared with what has been done
previously. This time the results are read into the variable results, which stores the
monthly mean estimated f-NO2 values.

The results (expressed as a percentage) for f-NO2 are then available for any other
processing or plotting. The function also automatically generates a plot of monthly
mean f-NO2 values as shown in Figure 23.1. It is clear from this Figure that f-NO2 was
relatively stable at around 10 % until the end of 2002, before increasing sharply during
2003 — and remaining at about 20 % until the end of 2007. At this particular site the
increases in f-NO2 are very apparent.

An interesting question is what would NO2 concentrations have been if f-NO2 re-
mained at the 10 % level, or indeed any other level. The calcFno2 function also allows
the user to input their own f-NO2 level and make new predictions. In this case the code
run is slightly different, shown in Figure 23.2.

By providing a value to the option user.fno2 (expressed as a fraction), the function
will automatically calculate NO2 concentrations with the chosen f-NO2 value applied to
the whole time series. In this case resultswill return a data frame with dates and NO2
concentrations. In addition a plot is produced as shown in Figure 23.2. The blue line and
shading show the measured data and highlight a clear increase in NO2 concentrations
from 2003 onwards. The red line and shading shows the predicted values assuming
(in this case) that f-NO2 was constant at 0.095. Based on these results it is clear that
NO2 concentrations would have been substantially less if it were not for the recent
increases in f-NO2.

12Note that the choice to give the plot a heading is optional.

192

http://www.openair-project.org
http://www.openair-project.org

23 The calcFno2 function—estimating primary NO2 fractions

results <- calcFno2(fno2Data, main = "Trends in f-NO2 at Marylebone Road",

pch = 16, smooth = TRUE, cex = 1.5)

date

f−
N

O
2

(%
)

5

10

15

20

25

1998 2000 2002 2004 2006

●●
●●●

●
●
●●
●●
●

●
●●

●
●

●

●●●
●
●●●●

●
●

●
●
●●
●●

●
●●
●●
●●●

●●●●●

●

●

●
●

●●
●
●●
●●●●

●●

●●

●●●

●●
●

●
●●●●

●●●
●●
●●●

●
●●●

●●
●●

●●

●

●

●

the results are a list of two data frame, the first is the f-NO2 results:

head(results$data[[1]])

date fno2

1.1998 1998-01-01 00:00:00 8.9

2.1998 1998-02-01 00:00:00 9.2

3.1998 1998-03-01 00:00:00 10.1

4.1998 1998-04-01 01:00:00 9.7

5.1998 1998-05-01 01:00:00 10.3

6.1998 1998-06-01 01:00:00 10.7

the second are the hourly nox, no2 and estimated o3:

head(results$data[[2]])

date nox no2 o3

1 1998-01-01 00:00:00 285 56 0.19

2 1998-01-01 03:00:00 493 73 0.11

3 1998-01-01 04:00:00 468 70 0.35

4 1998-01-01 05:00:00 264 54 1.22

5 1998-01-01 06:00:00 171 47 0.92

6 1998-01-01 07:00:00 195 51 2.18

FIGURE 23.1 Plot from the application of the calcFno2 function applied to Marylebone Road.
The plot shows a smooth fit with 95 % confidence intervals.

193

23 The calcFno2 function—estimating primary NO2 fractions

results <- calcFno2(fno2Data, user.fno2 = 0.095, smooth = TRUE, pch = 16, cex = 1.5)

date

N
O

2

40

50

60

70

1998 2000 2002 2004 2006

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●
●●

●

●●
●
●
●

●

●

●●

●

●

●

●

●
●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●●
●

●

●●
●

●

●●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●●

●●
●

●
●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

variable
●
●

measured
predicted

FIGURE 23.2 Plot from the application of the calcFno2 function applied to Marylebone Road
with a forced f-NO2 values of 0.095 over the whole series. The red line and shading shows the
trend in actual measurements and the blue line and shading the predicted trend in NO2 if the
f-NO2 ratio had remained at 0.095.

194

24 Utility functions

24 Utility functions

24.1 Selecting data by date

Selecting by date/time in R can be intimidating for new users—and time consuming
for all users. The selectByDate function aims to make this easier by allowing users
to select data based on the British way of expressing date i.e. d/m/y. This function
should be very useful in circumstances where it is necessary to select only part of a
data frame.

The function has the following options:

mydata A data frame containing a date field in hourly or high resolution format.

start A start date string in the form d/m/yyyy e.g. “1/2/1999” or in ‘R’ format
i.e. “YYYY-mm-dd”, “1999-02-01”

end See start for format.

year A year or years to select e.g. year = 1998:2004 to select 1998-2004
inclusive or year = c(1998, 2004) to select 1998 and 2004.

month A month or months to select. Can either be numeric e.g. month = 1:6 to
select months 1-6 (January to June), or by name e.g. month = c("January",

"December"). Names can be abbreviated to 3 letters and be in lower or
upper case.

day A day name or or days to select. day can be numeric (1 to 31) or character.
For example day = c("Monday", "Wednesday") or day = 1:10 (to
select the 1st to 10th of each month). Names can be abbreviated to 3
letters and be in lower or upper case. Also accepts “weekday” (Monday -
Friday) and “weekend” for convenience.

hour An hour or hours to select from 0-23 e.g. hour = 0:12 to select hours 0
to 12 inclusive.

195

24 Utility functions

select all of 1999

data.1999 <- selectByDate(mydata, start = "1/1/1999", end = "31/12/1999")

head(data.1999)

A tibble: 6 x 13

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 1999-01-01 00:00:00 5.04 140 88 35 4 21 3.84 1.02 18

2 1999-01-01 01:00:00 4.08 160 132 41 3 17 5.24 2.7 11

3 1999-01-01 02:00:00 4.8 160 168 40 4 17 6.51 2.87 8

4 1999-01-01 03:00:00 4.92 150 85 36 3 15 4.18 1.62 10

5 1999-01-01 04:00:00 4.68 150 93 37 3 16 4.25 1.02 11

6 1999-01-01 05:00:00 3.96 160 74 29 5 14 3.88 0.725 NA

... with 3 more variables: split.by <ord>, feature <chr>, ratio <dbl>

tail(data.1999)

A tibble: 6 x 13

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 1999-12-31 18:00:00 4.68 190 226 39 NA 29 5.46 2.38 23

2 1999-12-31 19:00:00 3.96 180 202 37 NA 27 4.78 2.15 23

3 1999-12-31 20:00:00 3.36 190 246 44 NA 30 5.88 2.45 23

4 1999-12-31 21:00:00 3.72 220 231 35 NA 28 5.28 2.22 23

5 1999-12-31 22:00:00 4.08 200 217 41 NA 31 4.79 2.17 26

6 1999-12-31 23:00:00 3.24 200 181 37 NA 28 3.48 1.78 22

... with 3 more variables: split.by <ord>, feature <chr>, ratio <dbl>

easier way

data.1999 <- selectByDate(mydata, year = 1999)

more complex use: select weekdays between the hours of 7 am to 7 pm

sub.data <- selectByDate(mydata, day = "weekday", hour = 7:19)

select weekends between the hours of 7 am to 7 pm in winter (Dec, Jan, Feb)

sub.data <- selectByDate(mydata, day = "weekend", hour = 7:19,

month = c("dec", "jan", "feb"))

The function can be used directly in other functions. For example, to make a polar
plot using year 2000 data:

polarPlot(selectByDate(mydata, year = 2000), pollutant = "so2")

24.2 Selecting run lengths of values above a threshold — pollution episodes

A seemingly easy thing to do that has relevance to air pollution episodes is to select run
lengths of contiguous values of a pollutant above a certain threshold. For example, one
might be interested in selecting O3 concentrations where there are at least 8 consecutive
hours above 90 ppb. In other words, a selection that combines both a threshold and
persistence. These periods can be very important from a health perspective and it can
be useful to study the conditions under which they occur. But how do you select such
periods easily? The selectRunning utility function has been written to do this. It
could be useful for all sorts of situations e.g.

• Selecting hours where primary pollutant concentrations are persistently high —
and then applying other openair functions to analyse the data in more depth.

• In the study of particle suspension or deposition etc. it might be useful to select

196

24 Utility functions

hours where wind speeds remain high or rainfall persists for several hours to see
how these conditions affect particle concentrations.

• It could be useful in health impact studies to select blocks of data where pollutant
concentrations remain above a certain threshold.

The selectRunning has the following options:

mydata A data frame with a date field and at least one numeric pollutant field
to analyse.

pollutant Name of variable to process. Mandatory.

run.len Run length for extracting contiguous values of pollutant above the
threshold value.

threshold The threshold value forpollutantabove which data should be extracted.

As an example we are going to consider O3 concentrations at a semi-rural site in
south-west London (Teddington). The data can be downloaded as follows:

ted <- importKCL(site = "td0", year = 2005:2009, met = TRUE)

see how many rows there are

nrow(ted)

We are going to contrast two polar plots of O3 concentration. The first uses all hours
in the data set, and the second uses a subset of hours. The subset of hours is defined
by O3 concentrations above 90 ppb for periods of at least 8-hours i.e. what might be
considered as ozone episode conditions.

episode <- selectRunning(ted, pollutant = "o3", threshold = 90, run.len = 8)

see how many rows there are

nrow(episode)

[1] 1399

Now we are going to produce two bivariate polar plots shown in Figure 24.1.
The results are shown in Figure 24.1. The polar plot for all data (left plot of Fig-

ure 24.1) shows that the highest O3 concentrations tend to occur for high wind speed
conditions from almost every direction. Lower concentrations are observed for low
wind speeds because concentrations of NOx are higher, resulting in O3 destruction.
By contrast, a polar plot of the episode conditions (right plot of Figure 24.1) is very
different. In this case there is a clear set of conditions where these criteria are met i.e.
lengths of at least 8-hours where the O3 concentration is at least 90 ppb. It is clear the
highest concentrations are dominated by south-easterly conditions i.e. corresponding
to easterly flow from continental Europe where there has been time to the O3 chemistry
to take place.

Another interesting test plot is to consider NOx concentrations at Marylebone Road
— see Figure 8.1, which shows that high concentrations are dominated by a swathe of
south-westerly wind conditions (even for high wind speeds). However, if a selection
is made of episode conditions (defined here as NOx concentrations>500 ppb for at
least 5-hours), then it can be seen that it is actually the low wind speed conditions that
dominate. These conditions correspond to low in-canyon wind speeds and low wind
speeds across London, which tend to elevate local and background NOx concentrations.
Even though high concentrations of NOx are observed at high wind speeds, it does not

197

24 Utility functions

polarPlot(ted, pollutant = "o3", min.bin = 2)

2

4

6 ws

8

10

W

S

N

E

mean

O3

20

40

60

80

100

polarPlot(episode, pollutant = "o3", min.bin = 2)

1

2

3 ws

4

5

6

W

S

N

E

mean

O3

95

100

105

110

115

120

125

130

135

140

FIGURE 24.1 Example of using the selectRunning function to select episode hours to produce
bivariate polar plots of O3 concentration.

seem that these conditions are as important for episode conditions. Users can run the
code below to verify these observations.

episode <- selectRunning(mydata, pollutant = "nox", threshold = 800, run.len = 5)

polarPlot(episode, pollutant = "nox", min.bin = 2)

24.3 Calculating rolling means

Some air pollution statistics such as for O3 and particulate matter are expressed as
rolling means and it is useful to be able to calculate these. It can also be useful to
help smooth-out data for clearer plotting. The rollingMean function makes these
calculations. One detail that can be important is that for some statistics a mean is only
considered valid if there are a sufficient number of valid readings over the averaging
period. Often there is a requirement for at least 75 % data capture. For example, with
an averaging period of 8 hours and a data capture threshold of 75%, at least 6 hours are

198

24 Utility functions

required to calculate the mean.
The function is called as follows; in this case to calculate 8-hour rolling mean con-

centrations of O3.

data(mydata)

mydata <- rollingMean(mydata, pollutant = "o3", hours = 8,

new.name = "rollingo3", data.thresh = 75)

tail(mydata)

A tibble: 6 x 11

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.81 28

2 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.64 26

3 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.29 34

4 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.29 34

5 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.29 33

6 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.29 35

... with 1 more variable: rollingo3 <dbl>

Note that calculating rolling means shortens the length of the data set. In the case
of O3, no calculations are made for the last 7 hours.

Type help(rollingMean) into R for more details. Note that the function currently
only works with a single site.

24.4 Aggregating data by different time intervals

Aggregating data by different averaging periods is a common and important task. There
are many reasons for aggregating data in this way:

1. Data sets may have different averaging periods and there is a need to combine
them. For example, the task of combining an hourly air quality data set with a
15-minute average meteorological data set. The need here would be to aggregate
the 15-minute data to 1-hour before merging.

2. It is extremely useful to consider data with different averaging times in a straight-
forward way. Plotting a very long time series of hourly or higher resolution data
can hide the main features and it would be useful to apply a specific (but flexible)
averaging period to the data for plotting.

3. Those who make measurements during field campaigns (particularly for aca-
demic research) may have many instruments with a range of different time res-
olutions. It can be useful to re-calculate time series with a common averaging
period; or maybe help reduce noise.

4. It is useful to calculate statistics other than means when aggregating e.g. per-
centile values, maximums etc.

5. For statistical analysis there can be short-term autocorrelation present. Being
able to choose a longer averaging period is sometimes a useful strategy for min-
imising autocorrelation.

In aggregating data in this way, there are a couple of other issues that can be useful
to deal with at the same time. First, the calculation of proper vector-averaged wind
direction is essential. Second, sometimes it is useful to set a minimum number of data
points that must be present before the averaging is done. For example, in calculating

199

24 Utility functions

monthly averages, it may be unwise to not account for data capture if some months
only have a few valid points.

When a data capture threshold is set throughdata.thresh it is necessary fortimeAverage
to know what the original time interval of the input time series is. The function will
try and calculate this interval based on the most common time gap (and will print
the assumed time gap to the screen). This works fine most of the time but there are
occasions where it may not e.g. when very few data exist in a data frame. In this case
the user can explicitly specify the interval through interval in the same format as
avg.time e.g. interval = "month". It may also be useful to set start.date and
end.date if the time series do not span the entire period of interest. For example, if a
time series ended in October and annual means are required, setting end.date to the
end of the year will ensure that the whole period is covered and that data.thresh is
correctly calculated. The same also goes for a time series that starts later in the year
where start.date should be set to the beginning of the year.

All these issues are (hopefully) dealt with by the timeAverage function. The options
are shown below, but as ever it is best to check the help that comes with the openair

package.
see also

timePlot for

plotting with

different

averaging times

and statistics

The timeAverage function has the following options:

mydata A data frame containing a date field . Can be class POSIXct or Date.

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”,
“day”, “DSTday”, “week”, “month”, “quarter” or “year”. For much in-
creased flexibility a number can precede these options followed by a
space. For example, a timeAverage of 2 months would be period =

"2 month". In addition, avg.time can equal “season”, in which case
3-month seasonal values are calculated with spring defined as March,
April, May and so on.
Note that avg.time can be less than the time interval of the original
series, in which case the series is expanded to the new time interval. This
is useful, for example, for calculating a 15-minute time series from an
hourly one where an hourly value is repeated for each new 15-minute
period. Note that when expanding data in this way it is necessary to
ensure that the time interval of the original series is an exact multiple
of avg.time e.g. hour to 10 minutes, day to hour. Also, the input time
series must have consistent time gaps between successive intervals so
thattimeAverage can work out how much ‘padding’ to apply. To pad-out
data in this way choose fill = TRUE.

data.thresh The data capture threshold to use (%). A value of zero means that
all available data will be used in a particular period regardless if of the
number of values available. Conversely, a value of 100 will mean that
all data will need to be present for the average to be calculated, else it
is recorded as NA. See also interval, start.date and end.date to see
whether it is advisable to set these other options.

statistic The statistic to apply when aggregating the data; default is the mean.
Can be one of “mean”, “max”, “min”, “median”, “frequency”, “sd”,
“percentile”. Note that “sd” is the standard deviation, “frequency” is the
number (frequency) of valid records in the period and “data.cap” is the
percentage data capture. “percentile” is the percentile level (%) between
0-100, which can be set using the “percentile” option — see below. Not
used if avg.time = "default".

200

24 Utility functions

type type allows timeAverage to be applied to cases where there are groups
of data that need to be split and the function applied to each group. The
most common example is data with multiple sites identified with a col-
umn representing site name e.g. type = "site". More generally, type
should be used where the date repeats for a particular grouping variable.
However, if type is not supplied the data will still be averaged but the
grouping variables (character or factor) will be dropped.

percentile The percentile level in % used whenstatistic = "percentile". The
default is 95.

start.date A string giving a start date to use. This is sometimes useful if a time
series starts between obvious intervals. For example, for a 1-minute time
series that starts “2009-11-29 12:07:00” that needs to be averaged up to
15-minute means, the intervals would be “2009-11-29 12:07:00”, “2009-
11-29 12:22:00” etc. Often, however, it is better to round down to a more
obvious start point e.g. “2009-11-29 12:00:00” such that the sequence
is then “2009-11-29 12:00:00”, “2009-11-29 12:15:00” …start.date is
therefore used to force this type of sequence.

end.date A string giving an end date to use. This is sometimes useful to make
sure a time series extends to a known end point and is useful when
data.thresh > 0 but the input time series does not extend up to the
final full interval. For example, if a time series ends sometime in October
but annual means are required with a data capture of >75% then it is
necessary to extend the time series up until the end of the year. Input in
the format yyyy-mm-dd HH:MM.

interval The timeAverage function tries to determine the interval of the origi-
nal time series (e.g. hourly) by calculating the most common interval
between time steps. The interval is needed for calculations where the
data.thresh >0. For the vast majority of regular time series this works
fine. However, for data with very poor data capture or irregular time
series the automatic detection may not work. Also, for time series such as
monthly time series where there is a variable difference in time between
months users should specify the time interval explicitly e.g. interval =

"month". Users can also supply a time interval to force on the time series.
See avg.time for the format.
This option can sometimes be useful with start.date and end.date

to ensure full periods are considered e.g. a full year when avg.time =

"year".

vector.ws Should vector averaging be carried out on wind speed if available? The
default is FALSE and scalar averages are calculated. Vector averaging
of the wind speed is carried out on the u and v wind components. For
example, consider the average of two hours where the wind direction
and speed of the first hour is 0 degrees and 2m/s and 180 degrees and
2m/s for the second hour. The scalar average of the wind speed is simply
the arithmetic average = 2m/s and the vector average is 0m/s. Vector-
averaged wind speeds will always be lower than scalar-averaged values.

fill When time series are expanded i.e. when a time interval is less than
the original time series, data are ‘padded out’ with NA. To ‘pad-out’ the

201

24 Utility functions

additional data with the first row in each original time interval, choose
fill = TRUE.

... Additional arguments for other functions calling timeAverage.

load in fresh version of mydata

data(mydata)

To calculate daily means from hourly (or higher resolution) data:

daily <- timeAverage(mydata, avg.time = "day")

head(daily)

A tibble: 6 x 10

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1998-01-01 00:00:00 6.84 188. 154. 39.4 6.87 18.2 3.15 2.70 NaN

2 1998-01-02 00:00:00 7.07 223. 132. 39.5 6.48 27.8 3.94 1.77 NaN

3 1998-01-03 00:00:00 11.0 226. 120. 38.0 8.41 20.2 3.20 1.74 NaN

4 1998-01-04 00:00:00 11.5 223. 105. 35.3 9.61 21.0 2.96 1.62 NaN

5 1998-01-05 00:00:00 6.61 237. 175. 46.0 4.96 24.2 4.52 2.13 NaN

6 1998-01-06 00:00:00 4.38 197. 214. 45.3 1.35 34.6 5.70 2.53 NaN

Monthly 95th percentile values:

monthly <- timeAverage(mydata, avg.time = "month", statistic = "percentile",

percentile = 95)

head(monthly)

A tibble: 6 x 10

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1998-01-01 00:00:00 11.2 45. 371. 68.6 14 53 11.1 3.99 NA

2 1998-02-01 00:00:00 8.16 16.7 524. 92 7 68.9 17.5 5.63 NA

3 1998-03-01 00:00:00 10.6 37.6 417. 85 15 61 18.4 4.85 NA

4 1998-04-01 00:00:00 8.16 44.4 384 81.5 20 52 14.6 4.17 NA

5 1998-05-01 00:00:00 7.56 40.6 300 80 25 61 12.7 3.55 40

6 1998-06-01 00:00:00 8.47 50.7 377 74.2 15 53 12.2 4.28 33.9

2-week averages but only calculate if at least 75% of the data are available:

twoweek <- timeAverage(mydata, avg.time = "2 week", data.thresh = 75)

head(twoweek)

A tibble: 6 x 10

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1997-12-29 00:00:00 6.98 212. 167. 41.4 4.63 29.3 4.47 2.17 NA

2 1998-01-12 00:00:00 4.91 221. 173. 42.1 4.70 28.8 5.07 1.86 NA

3 1998-01-26 00:00:00 2.78 242. 233. 51.4 2.30 34.9 8.07 2.45 NA

4 1998-02-09 00:00:00 4.43 215. 276. 57.1 2.63 43.7 8.98 2.94 NA

5 1998-02-23 00:00:00 6.89 237. 248. 56.7 4.99 28.8 9.79 2.57 NA

6 1998-03-09 00:00:00 2.97 288. 160. 44.8 5.64 32.7 8.65 1.62 NA

Note that timeAverage has a type option to allow for the splitting of variables by a
grouping variable. The most comon use fortype is when data are available for different
sites and the averading needs to be done on a per site basis.

First, retaining by site averages:

202

24 Utility functions

import some data for two sites

dat <- importAURN(c("kc1", "my1"), year = 2011:2013)

annual averages by site

timeAverage(dat, avg.time = "year", type = "site")

A tibble: 6 x 16

Groups: site [2]

site date o3 no2 co so2 pm10 nox no pm2.5

<fct> <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Lond~ 2011-01-01 00:00:00 39.4 36.1 0.225 2.06 23.7 53.8 11.6 16.3

2 Lond~ 2012-01-01 00:00:00 38.5 36.7 0.266 2.03 20.2 57.4 13.3 14.6

3 Lond~ 2013-01-01 00:00:00 38.4 36.9 0.250 2.01 23.1 57.9 13.7 14.7

4 Lond~ 2011-01-01 00:00:00 18.5 97.2 0.656 6.86 38.4 306. 137. 24.5

5 Lond~ 2012-01-01 00:00:00 15.0 94.0 0.589 8.13 30.8 313. 143. 21.5

6 Lond~ 2013-01-01 00:00:00 17.7 84.7 0.506 5.98 29.1 281. 128. 20.1

... with 6 more variables: nv2.5 <dbl>, v2.5 <dbl>, nv10 <dbl>, v10 <dbl>,

ws <dbl>, wd <dbl>

Retain site name and site code:

can also retain site code

timeAverage(dat, avg.time = "year", type = c("site", "code"))

A tibble: 6 x 17

Groups: site, code [2]

site code date o3 no2 co so2 pm10 nox no

<fct> <fct> <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Lond~ KC1 2011-01-01 00:00:00 39.4 36.1 0.225 2.06 23.7 53.8 11.6

2 Lond~ KC1 2012-01-01 00:00:00 38.5 36.7 0.266 2.03 20.2 57.4 13.3

3 Lond~ KC1 2013-01-01 00:00:00 38.4 36.9 0.250 2.01 23.1 57.9 13.7

4 Lond~ MY1 2011-01-01 00:00:00 18.5 97.2 0.656 6.86 38.4 306. 137.

5 Lond~ MY1 2012-01-01 00:00:00 15.0 94.0 0.589 8.13 30.8 313. 143.

6 Lond~ MY1 2013-01-01 00:00:00 17.7 84.7 0.506 5.98 29.1 281. 128.

... with 7 more variables: pm2.5 <dbl>, nv2.5 <dbl>, v2.5 <dbl>, nv10 <dbl>,

v10 <dbl>, ws <dbl>, wd <dbl>

Average all data across sites (drops site and code):

timeAverage(dat, avg.time = "year")

A tibble: 3 x 15

date o3 no2 co so2 pm10 nox no pm2.5 nv2.5

<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2011-01-01 00:00:00 31.5 67.1 0.439 4.31 31.4 181. 74.9 20.5 16.9

2 2012-01-01 00:00:00 26.9 64.7 0.424 5.08 25.6 182. 76.7 18.1 14.9

3 2013-01-01 00:00:00 28.0 60.7 0.378 3.79 26.8 169. 70.7 17.4 14.1

... with 5 more variables: v2.5 <dbl>, nv10 <dbl>, v10 <dbl>, ws <dbl>,

wd <dbl>

timeAverage also works the other way in that it can be used to derive higher tem-
poral resolution data e.g. hourly from daily data or 15-minute from hourly data. An
example of usage would be the combining of daily mean particle data with hourly
meteorological data. There are two ways these two data sets can be combined: either
average the meteorological data to daily means or calculate hourly means from the
particle data. The timeAverage function when used to ‘expand’ data in this way will
repeat the original values the number of times required to fill the new time scale. In
the example below we calculate 15-minute data from hourly data. As it can be seen,
the first line is repeated four times and so on.

203

24 Utility functions

data15 <- timeAverage(mydata, avg.time = "15 min", fill = TRUE)

head(data15, 20)

A tibble: 20 x 10

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.72 3.37 NA

2 1998-01-01 00:15:00 0.6 280 285 39 1 29 4.72 3.37 NA

3 1998-01-01 00:30:00 0.6 280 285 39 1 29 4.72 3.37 NA

4 1998-01-01 00:45:00 0.6 280 285 39 1 29 4.72 3.37 NA

5 1998-01-01 01:00:00 2.16 230 NA NA NA 37 NA NA NA

6 1998-01-01 01:15:00 2.16 230 NA NA NA 37 NA NA NA

7 1998-01-01 01:30:00 2.16 230 NA NA NA 37 NA NA NA

8 1998-01-01 01:45:00 2.16 230 NA NA NA 37 NA NA NA

9 1998-01-01 02:00:00 2.76 190 NA NA 3 34 6.83 9.60 NA

10 1998-01-01 02:15:00 2.76 190 NA NA 3 34 6.83 9.60 NA

11 1998-01-01 02:30:00 2.76 190 NA NA 3 34 6.83 9.60 NA

12 1998-01-01 02:45:00 2.76 190 NA NA 3 34 6.83 9.60 NA

13 1998-01-01 03:00:00 2.16 170 493 52 3 35 7.66 10.2 NA

14 1998-01-01 03:15:00 2.16 170 493 52 3 35 7.66 10.2 NA

15 1998-01-01 03:30:00 2.16 170 493 52 3 35 7.66 10.2 NA

16 1998-01-01 03:45:00 2.16 170 493 52 3 35 7.66 10.2 NA

17 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.07 8.91 NA

18 1998-01-01 04:15:00 2.4 180 468 78 2 34 8.07 8.91 NA

19 1998-01-01 04:30:00 2.4 180 468 78 2 34 8.07 8.91 NA

20 1998-01-01 04:45:00 2.4 180 468 78 2 34 8.07 8.91 NA

The timePlot can apply this function directly to make it very easy to plot data with
different averaging times and statistics.

24.5 Calculating percentiles

calcPercentilemakes it straightforward to calculate percentiles for a single pollu-
tant. It can take account of different averaging periods, data capture thresholds — see
Section 24.4 for more details. The function has the following options:

mydata A data frame of data with a date field in the format Date or POSIXct.
Must have one variable to apply calculations to.

pollutant Name of variable to process. Mandatory.

avg.time Averaging period to use. See timeAverage for details.

percentile A vector of percentile values. For example percentile = 50 for me-
dian values, percentile = c(5, 50, 95 for multiple percentile val-
ues.

data.thresh Data threshold to apply when aggregating data. See timeAverage for
details.

start Start date to use - see timeAverage for details.

For example, to calculate the 25, 50, 75 and 95th percentiles of O3 concentration by
year:

204

24 Utility functions

calcPercentile(mydata, pollutant = "o3", percentile = c(25, 50, 75, 95),

avg.time = "year")

date percentile.25 percentile.50 percentile.75 percentile.95

1 1998-01-01 2 4 7 16

2 1999-01-01 2 4 9 21

3 2000-01-01 2 4 9 22

4 2001-01-01 2 4 10 24

5 2002-01-01 2 4 10 24

6 2003-01-01 2 4 11 24

7 2004-01-01 2 5 11 23

8 2005-01-01 3 7 16 28

24.6 The corPlot function — correlation matrices

Understanding how different variables are related to one another is always important.
However, it can be difficult to easily develop an understanding of the relationships
when many different variables are present. One of the useful techniques used is to plot
a correlation matrix, which provides the correlation between all pairs of data. The basic
idea of a correlation matrix has been extended to help visualise relationships between
variables by Friendly (2002) and Sarkar (2007).

The corPlot shows the correlation coded in three ways: by shape (ellipses), colour
and the numeric value. The ellipses can be thought of as visual representations of
scatter plot. With a perfect positive correlation a line at 45 degrees positive slope is
drawn. For zero correlation the shape becomes a circle — imagine a ‘fuzz’ of points
with no relationship between them.

With many different variables it can be difficult to see relationships between variables
i.e. which variables tend to behave most like one another. For this reason hierarchical
clustering is applied to the correlation matrices to group variables that are most similar
to one another (if cluster = TRUE.)

It is also possible to use the openair type option to condition the data in many flexible
ways, although this may become difficult to visualise with too many panels.

The corPlot function has the following options:

mydata A data frame which should consist of some numeric columns.

pollutants the names of data-series inmydata to be plotted bycorPlot. The default
option NULL and the alternative “all” use all available valid (numeric)
data.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can
be one of the built-in types as detailed in cutData e.g. “season”, “year”,
“weekday” and so on. For example, type = "season"will produce four
plots — one for each season.
It is also possible to choose type as another variable in the data frame.
If that variable is numeric, then the data will be split into four quantiles
(if possible) and labelled accordingly. If type is an existing character or
factor variable, then those categories/levels will be used directly. This of-
fers great flexibility for understanding the variation of different variables
and how they depend on one another.

cluster Should the data be ordered according to cluster analysis. If TRUE hier-
archical clustering is applied to the correlation matrices using hclust

205

24 Utility functions

to group similar variables together. With many variables clustering can
greatly assist interpretation.

dendrogram Should a dendrogram be plotted? When TRUE a dendrogram is shown on
the right of the plot. Note that this will only work fortype = "default".

lower Should only the lower triangle be plotted?

cols Colours to be used for plotting. Options include “default”, “increment”,
“heat”, “spectral”, “hue”, “greyscale” and user defined (seeopenColours
for more details).

r.thresh Values of greater than r.threshwill be shown in bold type. This helps
to highlight high correlations.

text.col The colour of the text used to show the correlation values. The first value
controls the colour of negative correlations and the second positive.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automat-
ically try and format pollutant names and units properly e.g. by subscript-
ing the ‘2’ in NO2.

... Other graphical parameters passed ontolattice:levelplot, with com-
mon axis and title labelling options (such as xlab, ylab, main) being
passed via quickText to handle routine formatting.

An example of the corPlot function is shown in Figure 24.2. In this Figure it can
be seen the highest correlation coefficient is between PM10 and PM2.5 (r = 0. 84) and
that the correlations between SO2, NO2 and NOx are also high. O3 has a negative
correlation with most pollutants, which is expected due to the reaction between NO
and O3. It is not that apparent in Figure 24.2 that the order the variables appear is
due to their similarity with one another, through hierarchical cluster analysis. In this
case we have chosen to also plot a dendrogram that appears on the right of the plot.
Dendrograms provide additional information to help with visualising how groups of
variables are related to one another. Note that dendrograms can only be plotted for
type = "default" i.e. for a single panel plot.

Note also that the corPlot accepts a type option, so it possible to condition the data
in many flexible ways, although this may become difficult to visualise with too many
panels. For example:

corPlot(mydata, type = "season")

When there are a very large number of variables present, the corPlot is a very
effective way of quickly gaining an idea of how variables are related. As an example
(not plotted) it is useful to consider the hydrocarbons measured at Marylebone Road.
There is a lot of information in the hydrocarbon plot (about 40 species), but due to the
hierarchical clustering it is possible to see that isoprene, ethane and propane behave
differently to most of the other hydrocarbons. This is because they have different
(non-vehicle exhaust) origins. Ethane and propane results from natural gas leakage
whereas isoprene is biogenic in origin (although some is from vehicle exhaust too). It
is also worth considering how the relationships change between the species over the
years as hydrocarbon emissions are increasingly controlled, or maybe the difference
between summer and winter blends of fuels and so on.

206

24 Utility functions

corPlot(mydata, dendrogram = TRUE)

PM10

PM2.5

NO2

SO2

NOx

CO

O3

wind spd.

wind dir.

P
M

10

P
M

2.
5

N
O

2

S
O

2

N
O

x

C
O

O
3

w
in

d
sp

d.

w
in

d
di

r.

100 84 58 49 62 45 −28 2 −8

84 100 53 55 65 54 −33 −5 −8

58 53 100 58 79 54 −40 6 0

49 55 58 100 70 63 −35 −1 −2

62 65 79 70 100 82 −51 8 3

45 54 54 63 82 100 −41 14 3

−28 −33 −40 −35 −51 −41 100 16 −5

2 −5 6 −1 8 14 16 100 5

−8 −8 0 −2 3 3 −5 5 100

FIGURE 24.2 Example of a correlation matrix showing the relationships between variables.

hc <- importAURN(site = "my1", year = 2005, hc = TRUE)

now it is possible to see the hydrocarbons that behave most

similarly to one another

corPlot(hc)

24.7 Preparing data to compare sites, for model evaluation and intervention

analysis

Many of the functions described have the potential to be extremely flexible. Mention
has already been made of how to compare different sites in some of the functions. It
was stated that the data had to be in a certain format for the functions to work. This
section describes a few simple functions to do this — and more.

24.7.1 Intervention analysis

Another common scenario is that there is interest in showing plots by different time
intervals on the same scale. There could be all sorts of reasons for wanting to do this. A
classic example would be to show a before/after plot due to some intervention such
as a low emission zone. Again, the function below exploits the flexible ‘site’ option
available in many functions.

A small helper function splitByDate has been written to simplify chopping up a
data set into different defined periods. The function takes three arguments: a data
frame to process, a date (or dates) and labels for each period. If there was interest in

207

24 Utility functions

looking at mydata before and after the 1st Jan 2003, it would be split into two periods
(before that date and after). In other words, there will always be one more label than
there is date. We have made the function easier to use for supplying dates. Dates
can be accepted in the form ‘dd/mm/yyyy’ e.g. 13/04/1999 or as ‘yyyy-mm-dd’ e.g.
‘1999-04-13’.

The example below chops the data set up into three sections, called ‘before’, ‘during’
and ‘after’. This is done to show how more than one date can be supplied to the function.

mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"),

labels = c("before", "during", "after"))

head(mydata)

A tibble: 6 x 11

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.72 3.37 NA

2 1998-01-01 01:00:00 2.16 230 NA NA NA 37 NA NA NA

3 1998-01-01 02:00:00 2.76 190 NA NA 3 34 6.83 9.60 NA

4 1998-01-01 03:00:00 2.16 170 493 52 3 35 7.66 10.2 NA

5 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.07 8.91 NA

6 1998-01-01 05:00:00 3 190 264 42 0 16 5.50 3.05 NA

... with 1 more variable: split.by <ord>

tail(mydata)

A tibble: 6 x 11

date ws wd nox no2 o3 pm10 so2 co pm25

<dttm> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <int>

1 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.81 28

2 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.64 26

3 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.29 34

4 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.29 34

5 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.29 33

6 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.29 35

... with 1 more variable: split.by <ord>

As can be seen, there is a new field split.by (although the name can be set by the
user), where at the beginning of the time series it is labelled ‘before’ and at the end it is
labelled ‘after’. Now let us make a polar annulus plot showing the diurnal variation of
NO2 by wind direction:

In some cases it would make sense to have labels that refer to dates. Here is an
example:

mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"),

labels = c("before Jan. 2000", "Jan. 2000 - Mar. 2003",

"after Mar. 2003"))

24.7.2 Combining lots of sites

A typical example is that imported data have a date field and one or more pollutant
fields from one of more sites in a series of columns. The aim would be, for example, to
produce a series of plots by site for the same pollutant. If the data contains multiple
pollutants and multiple sites, it makes sense to subset the data first.13 For example, if a

13Note that if you are able to use data from the AURN archive using the importAURN function, the data
will already be in the correct format for direct use by many of the functions—although it may well be
necessary to merge some meteorological data first.

208

24 Utility functions

polarAnnulus(mydata, pollutant = "no2", type = "split.by", period = "hour",

layout = c(3, 1))

0

23

0

23

W

S

N

E

before

0

23

0

23

W

S

N

E

during

0

23

0

23

W

S

N

E

after mean

NO2

30

40

50

60

70

80

90

FIGURE 24.3 Example of processing data for use in the polarAnnulus function by time period
for NO2 concentrations at Marylebone Road.

data frame mydata has fields ‘date’, ‘nox.site1’, ‘so2.site1’, ‘nox.site2’, ‘so2.site2’, then
just working with the NOx data can be done by:

subdata <- subset(mydata, select = c(date, nox.site1, nox.site2))

Rather than import new data, the code below first makes an artificial data set from
which to work. In a real situation, the first few lines would not be needed.

load tidyverse package if it is not already loaded...

library(tidyverse)

siteData <- select(mydata, date, ws, wd, nox) %>%

mutate(site = "Site 1")

siteData2 <- siteData %>%

mutate(nox = nox / 2,

site = "Site 2")

siteData <- bind_rows(siteData, siteData2)

head(siteData)

A tibble: 6 x 5

date ws wd nox site

<dttm> <dbl> <int> <dbl> <chr>

1 1998-01-01 00:00:00 0.6 280 285 Site 1

2 1998-01-01 01:00:00 2.16 230 NA Site 1

3 1998-01-01 02:00:00 2.76 190 NA Site 1

4 1998-01-01 03:00:00 2.16 170 493 Site 1

5 1998-01-01 04:00:00 2.4 180 468 Site 1

6 1998-01-01 05:00:00 3 190 264 Site 1

Now it is possible to run many openair functions on this dataset. In this case, let
us consider a polarPlot. Note that this process would work with many more sites

209

24 Utility functions

polarPlot(siteData, pollutant = "nox", type = "site")

0

5

10 ws

15

20

25

W

S

N

E

Site 1

0

5

10 ws

15

20

25

W

S

N

E

Site 2 mean

NOx

50

100

150

200

250

FIGURE 24.4 Example of processing data for use in the polarPlot function by site.

than shown here. Note, however, many functions such as polarPlot accept multiple
pollutants and the importAURN and importKCL format multiple site data directly and
no additional work is required by the user.

Acknowledgements

We are very grateful to a range of organisations that have so far seen this initiative as
something worth supporting financially. These include:

• Dr Karl Ropkins of the Institute for Transport Studies at the University of Leeds
for his contributions during the NERC project.

• The initial funding supplied by the Faculty of Environment at the University of
Leeds to help develop a course on R to analyse and understand air pollution data.

• Sefton Council for their direct funding of data analysis in their borough as part
of the Beacon air quality scheme.

• AEA.

• North Lincolnshire Council.

• Defra as part of their work through the AURN.

• The Natural Environment Research Council (NERC) Knowledge Transfer grant
NE/G001081/1.

This work would not be possible without the incredible individuals who have given
their time freely to develop the R system. This includes those in the R-Core Develop-
ment Team and all those that contribute to its development (R Core Team 2015).

210

References

Further information

For any enquiries related to this document or the openair package, please use the
contact details below. Please contact us regarding any of the following: bug reports,
suggestions for existing functions, suggestions for new functions and offer of code
contributions. When reporting potential bugs, it is helpful (sometimes essential) to
submit a reproducible example, which would normally require sending a description
of the problem and the data set used. Also, we are interested in developing further
funded case studies.

David Carslaw
Department of Chemistry
University of York
Heslington
York
YO10 5DD
UK

e-mail: mailto:david.carslaw@york.ac.uk

References

APPLEQUIST, S. (2012). ‘Wind Rose Bias Correction’. In: Journal of Applied Meteorology
and Climatology 51.7, pp. 1305–1309 (cit. on pp. 38, 42).

AQEG (2008). Trends in primary nitrogen dioxide in the UK. Air Quality Expert Group.
Report prepared by the Air Quality Expert Group for the Department for Environ-
ment, Food, Rural Affairs; Scottish Executive; Welsh Assembly Government; and
Department of the Environment in Northern Ireland. (cit. on p. 191).

ARA BEGUM, B., E. KIM, C.-H. JEONG, D.-W. LEE and P. K. HOPKE (2005). ‘Evaluation
of the potential source contribution function using the 2002 Quebec forest fire
episode’. In: Atmospheric Environment 39.20, pp. 3719–3724. DOI: 10.1016/j.
atmosenv.2005.03.008 (cit. on p. 162).

ASHBAUGH, L. L., W. C. MALM and W. Z. SADEH (1985). ‘A residence time probability
analysis of sulfur concentrations at grand Canyon National Park’. In: Atmospheric
Environment (1967) 19.8, pp. 1263–1270. DOI: 10.1016/0004-6981(85)90256-2
(cit. on pp. 52, 71).

CARSLAW, D. C. (2005). ‘Evidence of an increasing NO2/NOx, emissions ratio from
road traffic emissions’. In: Atmospheric Environment 39.26, pp. 4793–4802 (cit. on
p. 190).

CARSLAW, D. C. and S. D. BEEVERS (2004). ‘Investigating the potential importance
of primary NO2 emissions in a street canyon’. In: Atmospheric Environment 38.22,
pp. 3585–3594 (cit. on p. 190).

— (2005). ‘Estimations of road vehicle primary NO2 exhaust emission fractions using
monitoring data in London’. In: Atmospheric Environment 39.1, pp. 167–177 (cit. on
p. 191).

— (2013). ‘Characterising and understanding emission sources using bivariate po-
lar plots and k-means clustering’. In: Environmental Modelling & Software 40.0,
pp. 325–329. DOI: 10.1016/j.envsoft.2012.09.005 (cit. on pp. 60, 76).

CARSLAW, D. C., S. D. BEEVERS, K. ROPKINS and M. C. BELL (2006). ‘Detecting and
quantifying aircraft and other on-airport contributions to ambient nitrogen oxides

211

mailto:david.carslaw@york.ac.uk
https://doi.org/10.1016/j.atmosenv.2005.03.008
https://doi.org/10.1016/j.atmosenv.2005.03.008
https://doi.org/10.1016/0004-6981(85)90256-2
https://doi.org/10.1016/j.envsoft.2012.09.005

References

in the vicinity of a large international airport’. In: Atmospheric Environment 40.28,
pp. 5424–5434 (cit. on pp. 60, 61).

CARSLAW, D. C., S. D. BEEVERS and J. E. TATE (2007). ‘Modelling and assessing trends
in traffic-related emissions using a generalised additive modelling approach’. In:
Atmospheric Environment 41.26, pp. 5289–5299 (cit. on p. 112).

CARSLAW, D. C. and N. CARSLAW (2007). ‘Detecting and characterising small changes
in urban nitrogen dioxide concentrations’. In: Atmospheric Environment 41.22,
pp. 4723–4733 (cit. on p. 190).

CHATFIELD, C. (2004). The analysis of time series : an introduction / Chris Chatfield. 6th
ed. Boca Raton, FL ; London : Chapman & Hall/CRC (cit. on p. 218).

CLAPP, L. J. and M. E. JENKIN (2001). ‘Analysis of the relationship between ambi-
ent levels of O3, NO2 and NO as a function of NOX in the UK’. In: Atmospheric
Environment 35.36, pp. 6391–6405 (cit. on p. 191).

COMEAP (2011). Review of the UK Air Quality Index: A report by the Committee on the
Medical Effects of Air Pollutants (cit. on p. 102).

DAVISON, A. C. and D. HINKLEY (1997). Bootstrap methods and their application. (An-
thony Christopher). Cambridge ; New York, NY, USA : Cambridge University Press
(cit. on p. 214).

DROPPO, J. G. and B. A. NAPIER (2008). ‘Wind direction bias in generating wind roses
and conducting sector-based air dispersion modeling’. In: Journal of the Air &
Waste Management Association 58.7, pp. 913–918 (cit. on p. 38).

EFRON, B. and R. TIBSHIRANI (1993). An Introduction to the Bootstrap. Chapman &
Hall (cit. on p. 214).

FLEMING, Z. L., P. S. MONKS and A. J. MANNING (2012). ‘Review: Untangling the
influence of air-mass history in interpreting observed atmospheric composition’.
In: Atmospheric Research 104-105, pp. 1–39. DOI: 10.1016/j.atmosres.2011.09.
009 (cit. on pp. 158, 162).

FRIENDLY, M. (2002). ‘Corrgrams: Exploratory Displays for Correlation Matrices’. In:
The American Statistician 56.4, pp. 316–325 (cit. on p. 205).

GRANGE, S. K., A. C. LEWIS and D. C. CARSLAW (2016). ‘Source apportionment
advances using polar plots of bivariate correlation and regression statistics’. In:
Atmospheric Environment 145, pp. 128–134 (cit. on p. 74).

HASTIE, T. J. and R. TIBSHIRANI (1990). Generalizedadditivemodels. London: Chapman
and Hall (cit. on p. 61).

HENRY, R., G. A. NORRIS, R. VEDANTHAM and J. R. TURNER (2009). ‘Source Region
Identification Using Kernel Smoothing’. In: Environmental Science & Technology
43.11, 4090–4097. DOI: {10.1021/es8011723} (cit. on pp. 42, 71).

HIRSCH, R. M., J. R. SLACK and R. A. SMITH (1982). ‘Techniques Of Trend Analysis
For Monthly Water-Quality Data’. In: Water Resources Research 18.1. ISI Document
Delivery No.: NC504, pp. 107–121 (cit. on p. 103).

HSU, Y.-K., T. M. HOLSEN and P. K. HOPKE (2003). ‘Comparison of hybrid receptor
models to locate PCB sources in Chicago’. In: Atmospheric Environment 37.4,
pp. 545–562. DOI: 10.1016/S1352-2310(02)00886-5 (cit. on p. 163).

KUNSCH, H. R. (1989). ‘The jackknife and the bootstrap for general stationary obser-
vations’. In: Annals of Statistics 17.3, pp. 1217–1241 (cit. on pp. 104, 214).

LEGATES, D. R. and G. J. MCCABE JR (1999). ‘Evaluating the use of “goodness-of-fit”
measures in hydrologic and hydroclimatic model validation’. In: Water Resources
Research 35.1, pp. 233–241 (cit. on p. 172).

LEGATES, D. R. and G. J. MCCABE (2012). ‘A refined index of model performance: a
rejoinder’. In: International Journal of Climatology (cit. on p. 172).

212

https://doi.org/10.1016/j.atmosres.2011.09.009
https://doi.org/10.1016/j.atmosres.2011.09.009
https://doi.org/{10.1021/es8011723}
https://doi.org/10.1016/S1352-2310(02)00886-5

References

LUPU, A. and W. MAENHAUT (2002). ‘Application and comparison of two statistical
trajectory techniques for identification of source regions of atmospheric aerosol
species’. In: Atmospheric Environment 36, pp. 5607–5618 (cit. on p. 163).

MCHUGH, C. A., D. J. CARRUTHERS and H. A. EDMUNDS (1997). ‘ADMS and ADMS-
Urban’. In: International Journal of Environment and Pollution 8.3-6, pp. 438–440
(cit. on p. 10).

PEKNEY, N. J., C. I. DAVIDSON, L. ZHOU and P. K. HOPKE (2006). ‘Application of PSCF
and CPF to PMF-Modeled Sources of PM 2.5 in Pittsburgh’. In: Aerosol Science
and Technology 40.10, pp. 952–961. DOI: 10.1080/02786820500543324 (cit. on
p. 162).

R CORE TEAM (2015). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria (cit. on p. 210).

SARKAR, D. (2007). Lattice Multivariate Data Visualization with R. ISBN 978-0-387-
75968-5. New York: Springer (cit. on p. 205).

SEIBERT, P., H. KROMP-KOLB, U. BALTENSPERGER and D. JOST (1994). ‘Trajectory
analysis of high-alpine air pollution data’. In: NATO Challenges of Modern Society
18, pp. 595–595 (cit. on p. 163).

SEN, P. K. (1968). ‘Estimates of regression coefficient based on Kendall’s tau’. In:
Journal of the American Statistical Association 63(324), pp. 1379–1389 (cit. on p. 103).

TAYLOR, K. E. (2001). ‘Summarizing multiple aspects of model performance in a single
diagram’. In: Journal of Geophysical Research 106.D7, pp. 7183–7192 (cit. on p. 175).

THEIL, H. (1950). ‘A rank invariant method of linear and polynomial regression analy-
sis, I, II, III’. In: Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen,
Series A – Mathematical Sciences 53, pp. 386–392, 521–525, 1397–1412 (cit. on p. 103).

URIA-TELLAETXE, I. and D. C. CARSLAW (2014). ‘Conditional bivariate probability
function for source identification’. In: Environmental Modelling & Software 59,
pp. 1–9. DOI: 10.1016/j.envsoft.2014.05.002 (cit. on pp. 60, 71, 73).

WESTMORELAND, E. J., N. CARSLAW, D. C. CARSLAW, A. GILLAH and E. BATES (2007).
‘Analysis of air quality within a street canyon using statistical and dispersion mod-
elling techniques’. In: Atmospheric Environment 41.39, pp. 9195–9205 (cit. on
p. 60).

WILCOX, R. R. (2010). Fundamentals of Modern Statistical Methods: Substantially Im-
proving Power and Accuracy. 2nd. Springer New York (cit. on p. 103).

WILKS, D. S. (2005). Statistical Methods in the Atmospheric Sciences, Volume 91, Second
Edition (International Geophysics). 2nd ed. Academic Press (cit. on p. 181).

WILLMOTT, C. J., S. M. ROBESON and K. MATSUURA (2011). ‘A refined index of model
performance’. In: International Journal of Climatology (cit. on p. 172).

WOOD, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman
and Hall/CRC (cit. on pp. 61, 216).

YU, K., Y. CHEUNG, T. CHEUNG and R. HENRY (2004). ‘Identifying the impact of large
urban airports on local air quality by nonparametric regression’. In: Atmospheric
Environment 38.27, pp. 4501–4507 (cit. on p. 60).

213

https://doi.org/10.1080/02786820500543324
https://doi.org/10.1016/j.envsoft.2014.05.002

A Bootstrap estimates of uncertainty

A Bootstrap estimates of uncertainty

A.1 The bootstrap

The bootstrap is a data-based simulation method for analysing data, including hypoth-
esis testing, standard error and confidence interval estimation. It involves repeatedly
drawing random samples from the original data, with replacement (see EFRON and
TIBSHIRANI (1993) and DAVISON and HINKLEY (1997) for a detailed history and ex-
amples of use of the bootstrap). Each bootstrap sample is the same size as the original
sample. The ‘with replacement’ bit is important. Sampling with replacement means
that after we randomly draw an observation from the original sample we put it back
before drawing the next observation i.e. it is possible to draw the same sample more
than once. In fact, on average, 37 % of data will not be sampled each time. If one
sampled without replacement it would be equivalent to just shuffling the data and no
new information is available. Typically, 100s or 1000s of samples are required in order
to derive reliable statistics.

The term bootstrap derives from the phrase “to pull oneself up by one’s bootstraps”.
The phrase is based on one of the eighteenth century Adventures of Baron Munchausen
by Rudolph Erich Raspe. The Baron had fallen to the bottom of a deep lake. Just when
it looked like all was lost, he thought to pick himself up by his own bootstraps! In a
statistical sense it is meant to convey the idea of generating ‘new’ data from the original
data set itself, which seems like an implausible thing to do, but has been shown to be
valid.

When the bootstrap was discovered in the 1970s it was difficult to apply to many
practical problems because computers were not powerful enough to carry out such
repetitive and intensive calculations. However, computers are now sufficiently power-
ful to allow these methods to be used (in most circumstances) easily. This section does
not aim to provide an in-depth consideration of statistics and justify the use of these
methods, but rather aims to provide some background in their use in openair.

When used to estimate confidence intervals, the bootstrap sampling will yield, say,
1000 estimates of the statistic of interest e.g. the slope of a trend. This distribution
could be highly skewed and this is one of the principal advantages of the technique:
normality is not required. We now have a 1000 bootstrap samples, and 1000 estimates
of the statistic of interest, one from each bootstrap sample. If these 1000 bootstrap
samples are ordered in increasing value, a bootstrap 95 % confidence interval for the
mean would be from the 25th to the 975th largest values. Sometimes, uncertainty
estimates are not symmetrical. For example, it may not be possible to report an uncer-
tainty as 100± 12, but 100 [87, 121], where 87 and 121 are the lower and upper 95 %
confidence intervals, respectfully.

A.2 The block bootstrap

The basic bootstrap assumes that data are independent. However, in time series this is
rarely the case due to autocorrelation when consecutive points in time are related to one
another. For example, for data with a strong seasonal effect, the month of January may
tend to have higher values than other months. These effects can, however, be difficult
to characterise and model. The motivation for accounting for autocorrelation in this
project is mostly to ensure that uncertainty estimates in trends and other statistics are
not overly optimistic, which would generally be the case if autocorrelation was not ac-
counted for. These effects can be accounted for by ensuring that the random sampling
captures the correlation structure of the data using a block bootstrap (KUNSCH 1989).
The idea is that if data (or residuals from a model) are sampled in small blocks, the

214

A Bootstrap estimates of uncertainty

date

co
nc

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.4 [0.33, 0.46] units/year ***

FIGURE A.1 AR1 time random series where the autocorrelation coefficient is zero.

correlation structure is retained, provided there is not significant correlation between
the blocks.

The following Figures highlight the importance of accounting for autocorrelation
using the TheilSen function. Figure A.1 shows a simulated time series comprising
of a linear trend+ some random noise with no autocorrelation. The Sen-Theil slope
and the slope uncertainties are shown (and the slope statistics upper left). By contrast,
Figure A.2 shows a similar series but with a high autocorrelation value of 0.8. In this
time series it is possible to see that the values seem to fall and rise in ‘chunks’, indicative
of autocorrelation. In this plot, no account has been taken of autocorrelation and the
uncertainty in the slope is very similar to Figure A.1.

However, if autocorrelation is accounted for using the data shown in Figure A.2, the
uncertainty in the slope increases markedly, as shown in Figure A.3. Instead of the
95 % confidence intervals ranging from 0.42–0.54, they now range from 0.36–0.61
— approximately double the uncertainty of the case where no account is taken of
autocorrelation.

The block bootstrap has also been applied to models e.g. the Generalized Additive
Model (GAM) used in the smoothTrend function. There are two options here: the
observations can be sampled and the models run many times (called case resampling),
or the residuals from the model can be sampled and added to the model predictions
to make ‘new’ input data and run many times (called residual resampling). There are
pros and cons with each approach, but often the two methods yield similar results. In
the case of a GAM (or specifically the mgcv package), which uses cross-validation for
model fitting, having duplicate samples through bootstrapping would seem to make
little sense. The approach adopted here therefore is to use residual resampling. The
effect of taking account of autocorrelation often (but not always) is an increase in the
predicted uncertainty intervals, and a smooth function that is less ‘wiggly’ than that
derived by not accounting for autocorrelation.

A more ‘robust’ approach is outlined in Appendix B, where models are used to
describe the correlation structure of the data.

Clearly, the importance of these issues is data-dependent and there are other issues
to consider too. However, if one is interested in drawing important inferences from
data, then it would seem wise to account for these effects. It should be noted that these
issues are an area of active research and will be revisited from time to time with the
aim of improving the robustness of the techniques used.

215

B A closer look at trends

date

co
nc

−2

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●

●
●●●

●

●●

●

●

●

●●●

●

●

●●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●●●

●

●
●
●

●●

●●
●
●
●

●●

●

●

●
●
●

●
●

●
●

●●

●

●●●

●
●

●

0.48 [0.42, 0.54] units/year ***

FIGURE A.2 AR1 time random series where the autocorrelation coefficient is 0.8. The uncer-
tainty in the Sen-Theil slope estimate does not account for autocorrelation.

date

co
nc

−2

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●

●
●●●

●

●●

●

●

●

●●●

●

●

●●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●●●

●

●
●
●

●●

●●
●
●
●

●●

●

●

●
●
●

●
●

●
●

●●

●

●●●

●
●

●

0.48 [0.36, 0.61] units/year ***

FIGURE A.3 AR1 time random series where the autocorrelation coefficient is 0.8. The uncer-
tainty in the Sen-Theil slope estimate does account for autocorrelation.

B A closer look at trends

Understanding trends is a core component of air quality and the atmospheric sciences
in general. openair provides two main functions for considering trends (smoothTrend
and TheilSen), the latter useful for linear trend estimates. Understanding trends and
quantifying them robustly is not so easy and careful analysis would treat each time
series individually and consider a wide range of diagnostics. In this section we take
advantage of some of the excellent capabilities that R has to consider fitting trend
models. Experience with real atmospheric composition data shows that trends are
rarely linear, which is unfortunate given how much of statistics has been built around
the linear model.

Generalized Additive Models (GAMs) offer a flexible approach to calculating trends
and in particular, the mgcv package contains many functions that are very useful for
such modelling. Some of the details of this type of model are presented in WOOD
(2006) and the mgcv package itself.

The example considered is 23 years of O3 measurements at Mace Head on the West
coast of Ireland. The example shows the sorts of steps that might be taken to build a
model to explain the trend. The data are first imported and then the year, month and
‘trend’ estimated. Note that ‘trend’ here is simply a decimal date that can be used to

216

B A closer look at trends

timePlot(monthly, pollutant = "o3")

O
3

50

60

70

80

90

1990 1995 2000 2005 2010

O3

FIGURE B.1 Monthly mean O3 concentrations at Mace Head, Ireland (1998–2010).

construct various explanatory models.
First we import the data:

library(mgcv)

dat <- importAURN(site = "mh", year = 1988:2010)

calculate monthly means

monthly <- timeAverage(dat, avg.time = "month")

now calculate components for the models

monthly$year <- as.numeric(format(monthly$date, "%Y"))

monthly$month <- as.numeric(format(monthly$date, "%m"))

monthly <- transform(monthly, trend = year + (month - 1) / 12)

It is always a good idea to plot the data first:
Figure B.1 shows that there is a clear seasonal variation in O3 concentrations, which

is certainly expected. Less obvious is whether there is a trend.
Even though it is known there is a seasonal signal in the data, we will first of all ignore

it and build a simple model that only has a trend component (model M0).

217

B A closer look at trends

acf(residuals(M0))

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0
Lag

A
C

F

Series residuals(M0)

FIGURE B.2 ACF for the residuals of model M0.

M0 <- gam(o3 ~ s(trend), data = monthly)

summary(M0)

##

Family: gaussian

Link function: identity

##

Formula:

o3 ~ s(trend)

##

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.34 0.62 115 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Approximate significance of smooth terms:

edf Ref.df F p-value

s(trend) 1 1 6.96 0.0088 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

R-sq.(adj) = 0.0212 Deviance explained = 2.48%

GCV = 106.82 Scale est. = 106.04 n = 276

This model only explains about 2% of the variation as shown by the adjusted r2. More
of a problem however is that no account has been taken of the seasonal variation. An
easy way of seeing the effect of this omission is to plot the autocorrelation function
(ACF) of the residuals, shown in Figure B.2. This Figure clearly shows the residuals
have a strong seasonal pattern. CHATFIELD (2004) provides lots of useful information
on time series modelling.

A refined model should therefore take account of the seasonal variation in O3 con-
centrations. Therefore, we add a term taking account of the seasonal variation. Note
also that we choose a cyclic spline for the monthly component (bs = "cc"), which
joins the first and last points i.e. January and December.

218

B A closer look at trends

plot.gam(M1, select = 1, shade = TRUE)

1990 1995 2000 2005 2010

−
10

0
5

10
15

trend

s(
tr

en
d,

1.
22

)

FIGURE B.3 The trend component of model M1.

M1 <- gam(o3 ~ s(trend) + s(month, bs = "cc"), data = monthly)

summary(M1)

##

Family: gaussian

Link function: identity

##

Formula:

o3 ~ s(trend) + s(month, bs = "cc")

##

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.343 0.374 191 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Approximate significance of smooth terms:

edf Ref.df F p-value

s(trend) 1.22 1.4 15.8 1.1e-05 ***

s(month) 6.11 8.0 59.4 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

R-sq.(adj) = 0.644 Deviance explained = 65.4%

GCV = 39.766 Scale est. = 38.566 n = 276

Now we have a model that explains much more of the variation with an r2 of 0.65.
Also, the p-values for the trend and seasonal components are both highly statistically
significant. Let’s have a look at the separate components for trend and seasonal varia-
tion:

The seasonal component shown in Figure B.4 clearly shows the strong seasonal
effect on O3 at this site (peaking in April). The trend component is actually linear in
this case and could be modelled as such. This model looks much better, but as is often
the case autocorrelation could remain important. The ACF is shown in Figure B.5 and
shows there is still some short-term correlation in the residuals.

Note also that there are other diagnostic tests one should consider when comparing
these models that are not shown here e.g. such as considering the normality of the
residuals. Indeed a consideration of the residuals shows that the model fails to some
extent in explaining the very low values of O3, which can be seen in Figure B.1. These

219

B A closer look at trends

plot.gam(M1, select = 2, shade = TRUE)

2 4 6 8 10 12

−
10

0
5

10
15

month

s(
m

on
th

,6
.1

1)

FIGURE B.4 The seasonal component of model M1.

acf(residuals(M1))

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series residuals(M1)

FIGURE B.5 ACF for the residuals of model M1.

few points (which skew the residuals) may well be associated with air masses from the
polluted regions of Europe. Better and more useful models would likely be possible
if the data were split my airmass origin, which is something that will be returned to
when openair includes a consideration of back trajectories.

Further tests, also considering the partial autocorrelation function (PACF) suggest
that an AR1 model is suitable for modelling this short-term autocorrelation. This
is where modelling using a GAMM (Generalized Additive Mixed Model) comes in
because it is possible to model the short-term autocorrelation using a linear mixed
model. The gamm function uses the package nlme and the Generalized Linear Mixed
Model (GLMM) fitting routine. In the M2 model below the correlation structure is
considered explicitly.

220

B A closer look at trends

acf(residuals(M2$lme, type = "normalized"))

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series residuals(M2$lme, type = "normalized")

FIGURE B.6 ACF for the residuals of model M2.

M2 <- gamm(o3 ~ s(month, bs = "cc") + s(trend), data = monthly,

correlation = corAR1(form = ~ month | year))

summary(M2$gam)

##

Family: gaussian

Link function: identity

##

Formula:

o3 ~ s(month, bs = "cc") + s(trend)

##

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.316 0.493 145 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Approximate significance of smooth terms:

edf Ref.df F p-value

s(month) 6.91 8 42.2 < 2e-16 ***

s(trend) 1.00 1 15.1 0.00013 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

R-sq.(adj) = 0.643

Scale est. = 38.863 n = 276

The ACF plot is shown in Figure B.6 and shows that the autocorrelation has been dealt
with and we can be rather more confident about the trend component (not plotted).
Note that in this case we need to use the normalized residuals to get residuals that take
account of the fitted correlation structure.

Note that model M2 assumes that the trend and seasonal terms vary independently
of one another. However, if the seasonal amplitude and/or phase change over time then
a model that accounts for the interaction between the two may be better. Indeed, this
does seem to be the case here, as shown by the improved fit of the model below. This
model uses a tensor product smooth (te) and the reason for doing this and not using
an isotropic smooth (s) is that the trend and seasonal components are essentially on
different scales. We would not necessarily want to apply the same level of smoothness
to both components. An example of covariates on the same scale would be latitude

221

C Production of HYSPLIT trajectory files

plot(M3$gam, select = 2, pers = TRUE, theta = 225, phi = 10,ticktype = "detailed")

Error in plot(M3$gam, select = 2, pers = TRUE, theta = 225, phi = 10, : object

'M3' not found

FIGURE B.7 Plot showing the two-way interaction between the trend and seasonal components.

and longitude.

M3 <- gamm(o3 ~ s(month, bs = "cc") + te(trend, month), data = monthly,

correlation = corAR1(form = ~ month | year))

Error in corAR1(form = ~month | year): could not find function "corAR1"

summary(M3$gam)

Error in summary(M3$gam): object 'M3' not found

It becomes a bit more difficult to plot the two-way interaction between the trend
and the month, but it is possible with a surface as shown in Figure B.7. This plot shows
for example that during summertime the trends component varies little. However for
the autumn and winter months there has been a much greater increase in the trend
compnent for O3.

While there have been many steps involved in this short analysis, the data at Mace
Head are not typical of most air quality data observed, say in urban areas. Much of the
data considered in these areas does not appear to have significant autocorrelation in
the residuals once the seasonal variation has been accounted for, therefore avoiding
the complexities of taking account of the correlation structure of the data. It may be
for example that sites like Mace Head and a pollutant such as O3 are much more prone
to larger scale atmospheric processes that are not captured by these models.

C Production of HYSPLIT trajectory files

As discussed in Section 19, openair can import pre-calculated trajectory data for speci-
fied locations. The data are stored on a Ricardo webserver to make it easy to import
96-hour back trajectory data. Several users have requested how they can run HYSPLIT
themselves e.g. for different trajectory start heights or for many locations. This section
provides the code necessary to run the HYSPLIT model. The code below assumes that
full years are run, but it could be adopted for shorter periods. There are three main
parts to producing trajectory files:

1. Download and install the NOAA Hysplit model, somewhere with write access
(see below).

2. Download the monthly meteorological (.gbl) files also from the NOAA website.

3. Obtain the code to run Hysplit.

To run back trajectories it is necessary to download the meteorological data files.
The easiest way to download the meteorological files is using the function below.

222

C Production of HYSPLIT trajectory files

getMet <- function (year = 2013, month = 1, path_met = "~/TrajData/") {

for (i in seq_along(year)) {

for (j in seq_along(month)) {

download.file(url = paste0("ftp://arlftp.arlhq.noaa.gov/archives/reanalysis/RP",

year[i], sprintf("%02d", month[j]), ".gbl"),

destfile = paste0(path_met, "RP", year[i],

sprintf("%02d", month[j]), ".gbl"), mode = "wb")

}

}

}

The function will download monthly met files (each about 120 MB) to the chosen
directory. Note that the met data files only need be downloaded once. For example, to
download files for 2013:

getMet(year = 2013, month = 1:12)

The original functions have been modified by Stuart Grange (PhD student at the
University of York). It is first necessary on ensure that the stringr and devtools

packages are installed. The latter is needed to load some R functions stored as a
GitHub gist (some code that can be shared publicly).

library(devtools)

source_gist("https://gist.github.com/davidcarslaw/c67e33a04ff6e1be0cd7357796e4bdf5",

filename = "run_hysplit.R")

Sourcing https://gist.githubusercontent.com/davidcarslaw/c67e33a04ff6e1be0cd7357796e4bdf5/raw/1eb36e223725308934bfa189c30969014e979198/run_hysplit.R

SHA-1 hash of file is e1d37c75528ac18924fd0c6902318702301fa591

Now there should be several loaded functions, including run_hysplit. To run Hys-
plit, have a look at the examples here https://gist.github.com/davidcarslaw/
c67e33a04ff6e1be0cd7357796e4bdf5.

On my Windows machine it is run as follows:

data_out <- run_hysplit(

latitude = 36.134,

longitude = -5.347,

runtime = -96,

start_height = 10,

model_height = 10000,

start = 2015,

end = "2015-01-10",

hysplit_exec = "~/hysplit4/exec",

hysplit_input = "~/trajData",

hysplit_output = "~/temp",

site = "gibraltar")

The data_out can then be used directly in openair trajectory functions.
Most of the options should be self-explanatory but hysplit_exec is the path to the

Hysplit executable,hysplit_input is the path to the meteorological files (downloaded
as described above) and hysplit_output is the directory where Hysplit will write its
temporary files.

Once run it is then advisable to store the data somewhere. Save it like:

saveRDS(data_out, file = "~/trajProc/myTrajData.rds")

Then it is easy to read in later and use e.g.

223

https://gist.github.com/davidcarslaw/c67e33a04ff6e1be0cd7357796e4bdf5
https://gist.github.com/davidcarslaw/c67e33a04ff6e1be0cd7357796e4bdf5

C Production of HYSPLIT trajectory files

traj <- readRDS("~/trajProc/myTrajData.rds")

224

	1 Introduction
	1.1 Access to source code
	1.2 Brief introduction to openair functions
	1.3 Input data requirements
	1.3.1 Dealing with more than one site

	1.4 Using colours
	1.5 Automatic text formatting
	1.6 Multiple plots on a page
	1.7 Annotating darkred openair plots
	1.8 Getting help

	2 Getting data into openair
	2.1 Issues related to time zones
	2.2 The import function
	2.3 Importing UK Air Quality Data
	2.4 Site Meta Data
	2.5 Importing data from the CERC ADMS modelling systems
	2.5.1 An example considering atmospheric stability

	3 The summaryPlot function
	4 The cutData function
	5 The windRose and pollutionRose functions
	5.1 Purpose
	5.2 Options available
	5.3 Example of use

	6 The percentileRose function
	6.1 Purpose
	6.2 Options available
	6.3 Example of use

	7 The polarFreq function
	7.1 Purpose
	7.2 Options available
	7.3 Example of use

	8 The polarPlot and polarCluster functions
	8.1 Purpose
	8.2 Options available
	8.3 Example of use
	8.3.1 Nonparametric Wind Regression, NWR
	8.3.2 Conditional Probability Function (CPF) plot
	8.3.3 Pairwise statistics
	8.3.4 The darkred polarCluster function for feature identification and extraction

	9 The polarAnnulus function
	9.1 Purpose
	9.2 Options available
	9.3 Example of use

	10 The timePlo function
	10.1 Purpose
	10.2 Options available
	10.3 Example of use

	11 The timeProp function
	12 The calendarPlot function
	12.1 Purpose
	12.2 Options available
	12.3 Example of use

	13 The TheilSen function
	13.1 Purpose
	13.2 Options available
	13.3 Example of use
	13.4 Output

	14 The smoothTrend function
	14.1 Purpose
	14.2 Options available
	14.3 Example of use

	15 The timeVariation function
	15.1 Purpose
	15.2 Options available
	15.3 Example of use
	15.4 Output

	16 The scatterPlot function
	16.1 Purpose
	16.2 Options available
	16.3 Example of use

	17 The linearRelation function
	17.1 Options available
	17.2 Example of use

	18 The trendLevel function
	18.1 Purpose
	18.2 Options available
	18.3 Example of use

	19 openair back trajectory functions
	19.1 Trajectory gridded frequencies
	19.2 Trajectory source contribution functions
	19.2.1 Identifying the contribution of high concentration back trajectories
	19.2.2 Allocating trajectories to different wind sectors
	19.2.3 Potential Source Contribution Function (PSCF)
	19.2.4 Concentration Weighted Trajectory (CWT)

	19.3 Back trajectory cluster analysis with the trajCluster function

	20 Model evaluation — the modStats function
	20.1 Purpose
	20.2 Options available
	20.3 Example of use

	21 Model evaluation — the TaylorDiagram function
	21.1 Purpose
	21.2 Options available
	21.3 Example of use

	22 Model evaluation — the conditionalQuantile and conditionalEval functions
	22.1 Purpose
	22.2 Options available
	22.3 Example of use

	23 The calcFno2 function—estimating primary NO2 fractions
	23.1 Purpose
	23.2 Options available
	23.3 Example of use

	24 Utility functions
	24.1 Selecting data by date
	24.2 Selecting run lengths of values above a threshold — pollution episodes
	24.3 Calculating rolling means
	24.4 Aggregating data by different time intervals
	24.5 Calculating percentiles
	24.6 The corPlot function — correlation matrices
	24.7 Preparing data to compare sites, for model evaluation and intervention analysis
	24.7.1 Intervention analysis
	24.7.2 Combining lots of sites

	Acknowledgements
	Further information and bug reporting
	A Bootstrap estimates of uncertainty
	A.1 The bootstrap
	A.2 The block bootstrap

	B A closer look at trends
	C Production of HYSPLIT trajectory files

